Меню
Главная
Случайная статья
Настройки
|
Эффект Ааронова — Бома (иначе эффект Эренберга — Сидая — Ааронова — Бома) — квантовое явление, при котором электромагнитное поле влияет на частицу с электрическим зарядом или магнитным моментом даже в тех областях, где напряжённость электрического поля и индукция магнитного поля равны нулю[1], но не равны нулю скалярный и/или векторный потенциалы электромагнитного поля (то есть если не равен нулю электромагнитный потенциал).
Самая ранняя форма этого эффекта была предсказана Эренбергом и Сидаем в 1949 году[2], подобный эффект был позже предсказан вновь Аароновым и Бомом в 1959 году[3].
Содержание
Эксперимент
Наиболее часто описываемый случай, иногда называемый эффектом соленоида Ааронова–Бома, происходит, когда волновая функция заряженной частицы, проходящей вокруг длинного соленоида, претерпевает сдвиг фазы из-за заключённого магнитного поля, несмотря на то что магнитное поле пренебрежимо мало в области, через которую проходит частица, и волновая функция частицы также пренебрежимо мала внутри соленоида. Этот сдвиг фазы был экспериментально наблюдён [4]. Также существуют магнитные эффекты Ааронова–Бома, влияющие на связанные энергии и сечения рассеяния, но эти случаи ещё не были экспериментально проверены. Было предсказано электрическое явление Ааронова–Бома, при котором заряженная частица взаимодействует с областями, имеющими разные электрические потенциалы, но нулевое электрическое поле, однако это явление пока не имеет экспериментального подтверждения [4]. Отдельный "молекулярный" эффект Ааронова–Бома был предложен для ядерного движения в многосвязанных областях, однако утверждается, что это другой тип геометрической фазы, так как он "не является ни нелокальным, ни топологическим", а зависит только от локальных величин вдоль ядерного пути [5].
Эффект наблюдается для магнитного поля и электрического поля, но влияние магнитного поля зафиксировать легче, поэтому впервые эффект был зарегистрирован именно для него в 1960 году[6]. Эти экспериментальные данные, однако, подвергались критике, поскольку в проводимых измерениях не удавалось в полной мере создать условия, при которых напряжённость магнитного поля была бы строго равна нулю на всей траектории движения электрона.
Все сомнения в существовании эффекта в экспериментах были сняты после проведения в 1986 году опытов с использованием сверхпроводящих материалов, полностью экранирующих магнитное поле (в смысле экранирования его вектора индукции)[7].
Интерпретации и трактовки
Сущность эффектов Ааронова — Бома можно переформулировать следующим образом: обычной для классической электродинамики[8] концепции локального воздействия напряжённости[9] электромагнитного поля на частицу недостаточно, чтобы предсказать квантовомеханическое поведение частицы. В терминах напряжённостей полей, для описания заряженной квантовой частицы оказалось необходимым знать напряжённость электромагнитного поля во всём пространстве.[10]. Если E или B не равны нулю хотя бы в какой-то области пространства, вероятность попадания в которую для классической заряженной частицы равна нулю, то такое поле, тем не менее, может заметно влиять на квантовое поведение заряженной частицы (а именно - на фазу волновой функции частицы). При этом изменяется дифракционная картина, в том числе положение дифракционного максимума и т. п.
Однако через электромагнитный потенциал теория эффекта строится естественно и локально.[источник не указан 3531 день]
Эффект Ааронова — Бома можно интерпретировать как доказательство того, что потенциалы электромагнитного поля являются не просто математической абстракцией, полезной для вычисления напряжённостей, а в принципе независимо наблюдаемыми[11] величинами, имеющими таким образом несомненный и прямой физический смысл.
Противопоставление потенциалов и силовых характеристик поля
|
|