Меню

Главная
Случайная статья
Настройки
Автоволны
Материал из https://ru.wikipedia.org

Автоволны (англ. autowaves[прим. 1]) — это самоподдерживающиеся нелинейные волны в активных средах (то есть содержащих распределённые источники энергии). Термин в основном применяется к процессам, где волной переносится относительно малая энергия, которая необходима для синхронизации или переключения активной среды.

Содержание

Введение

Актуальность и значимость

Автоволны (АВ) являются распределёнными аналогами автоколебаний в сосредоточенных системах. Их примерами являются волны горения, нервные импульсы, волны распределения туннельных переходов (в полупроводниках) и т.п. Автоволновые процессы (АВП) лежат в основе большинства процессов управления и передачи информации в биологических системах. (...) Интересной особенностью активных сред является то, что в них могут возникать автоволновые структуры (АВС) (...) Важность АВС определяется следующим:
1. АВ и АВС могут осуществляться в системах любой физической природы, динамика которых описывается уравнениями вида (1).
2. Это новый тип динамических процессов, порождающих макроскопический линейный масштаб за счёт локальных взаимодействий, каждое из которых линейным масштабом не обладает.
3. АВС являются основой морфогенеза в биологических системах.
4.  Возникновение АВС — новый механизм турбулентности в активных средах.[B: 1]

В 1980 г. советские учёные Г.Р. Иваницкий, чл.-кор. АН СССР, директор; В.И. Кринский, зав. лабораторией; А.Н. Заикин, с. н. с. ИБФАН; А.М. Жаботинский, зав. лабораторией НИИБИХС; Б.П. Белоусов, химик-аналитик, стали лауреатами высшей государственной награды СССР — Ленинской премии «за обнаружение нового класса автоволновых процессов и исследование их в нарушении устойчивости возбудимых распределённых систем».

Краткие исторические сведения

Изучением автоколебаний активно занимался академик А. А. Андронов, и сам термин «автоколебания» в русскоязычную терминологию введён А. А. Андроновым в 1928 году. Его последователи из ННГУ в дальнейшем внесли большой вклад[прим. 2] в развитие автоволновой теории.

Простейшие автоволновые уравнения, описывающие процессы горения, были изучены А. Н. Колмогоровым[A: 1], И. Е. Петровским, Н. С. Пискуновым в 1937 г. а также Я. Б. Зельдовичем и Д. А. Франк-Каменецким[A: 2] в 1938 г.

Классическая аксиоматическая модель автоволн в миокарде была опубликована в 1946 году Норбертом Винером и Артуром Розенблютом[англ.].[A: 3]

В период 1970-1980 гг. основные усилия по изучению автоволн были сосредоточены в ИБФАН Академии наук СССР, находящемся в подмосковном городе Пущино. Именно здесь под руководством В. И. Кринского были воспитаны ныне известные во всём мире специалисты в области изучения автоволн: А. В. Панфилов, И. Р. Ефимов, Р. Р. Алиев, К. И. Агладзе, О. А. Морнев, М. А. Цыганов. Также в Пущино, в соседнем институте ИМПБ РАН, в лаборатории Э. Э. Шноля приобрели опыт работы с автоволновой теорией В. В. Бикташев, Ю. Е. Елькин, А. В. Москаленко.

Вероятно, именно в Пущино и был предложен термин «автоволны» по аналогии с ранее уже прижившимся «автоколебания».

Практически сразу после распада СССР многие из перечисленных пущинских ученых выехали работать в зарубежных институтах, где и сейчас продолжают свои исследования автоволн. В частности, И. Р. Ефимову принадлежит разработка теории виртуального электрода[A: 4], возникающего при дефибрилляции.

Известны также своими исследованиями автоволн российские ученые А. Н. Заикин и Э. Э. Шноль (автоволны и бифуркационная память в системе свёртывания крови)[A: 5][A: 6]; А. Ю. Лоскутов (общая автоволновая теория, а также динамический хаос в автоволнах)[B: 2]; В. Г. Яхно (общая автоволновая теория, а также автоволны и процесс мышления)[A: 7]; К. И. Агладзе (автоволны в химических средах)[A: 8][A: 9]; В. В. Бикташев (общая автоволновая теория, а также разные виды дрейфа автоволновых ревербераторов)[A: 10][A: 11]; О. А. Морнев (общая автоволновая теория)[A: 12][A: 13]; М. А. Цыганов (роль автоволн в популяционной динамике)[A: 14]; Ю. Е. Елькин, А. В. Москаленко (бифуркационная память в модели миокарда)[A: 15][A: 16].

Из иностранных исследователей огромная роль принадлежит Денису Ноблу и сотрудникам его команды Оксфордского университета в развитии и исследовании автоволновых моделей различных типов миокарда.

Основные определения

Одно из первых определений автоволн выглядело следующим образом:

Под автоволнами принято сейчас понимать самоподдерживающийся волновой процесс в неравновесной среде, остающийся неизменным при достаточно малых изменениях как начальных, так и граничных условий. (...) Математическим аппаратом для описания автоволн чаще всего служат уравнения диффузионного типа с активной нелинейностью.[B: 1]

В отличие от линейных волн — звуковых, электромагнитных и других, свойственных консервативным системам и математически описываемых при помощи линейных гиперболических уравнений второго порядка (волновыми уравнениями), — динамика автоволны в терминах дифференциальных уравнений может быть описана параболическими уравнениями второго порядка с нелинейным свободным членом специального вида. Конкретный вид свободного члена чрезвычайно играет важную роль, потому что:

все волновые процессы порождаются динамикой нелинейной точечной системы , которая является автоколебательной или потенциально автоколебательной.[B: 1]

Обычно имеет -образную зависимость от . В этом смысле система уравнений, известная как модель Алиева-Панфилова[A: 17], представляет собой весьма экзотический пример: имеет в ней весьма сложный вид двух пересекающихся парабол, к тому же ещё и пересекаемых двумя прямыми, что приводит к ещё более выраженным нелинейным свойствам этой модели.

Автоволна является примером самоподдерживающегося волнового процесса в протяжённых нелинейных системах, содержащих распределенные источники энергии. Для простых автоволн период, длина волны, скорость распространения, амплитуда и другие характеристики автоволны определяются исключительно локальными свойствами среды. Однако в 21-м веке исследователи стали обнаруживать всё большее число примеров автоволновых решений, когда этот «классический» принцип нарушается (см. также общие сведения в литературе, — например, в[B: 3][B: 4][B: 5][B: 2][B: 6][A: 18][A: 15][A: 16][A: 5][A: 6]).

Простейшие примеры

Простейшая повседневная модель автоволны — ряд костяшек домино, которые последовательно падают, если уронить крайнюю (принцип домино). Это пример волны переключения.

В качестве ещё одного примера автоволны, представьте себе, что вы встали на поле и поджигаете траву. Пока температура ниже порогового значения, трава не загорается. При достижении порогового значения температуры (температуры воспламенения) трава начинается процесс горения, с выделением при этом теплоты, достаточной для воспламенения соседних участков. В результате образуется фронт огня, который бежит по полю. При этом говорят, что возникла автоволна, — один из результатов самоорганизации в термодинамически активных неравновесных системах. Через какое-то время на месте сгоревшей травы вырастает новая, и занятая травой территория снова приобретает способность воспламеняться.

Кроме движения фронта горения к автоволновым процессам относятся колебательные химические реакции в активных средах (реакция Белоусова-Жаботинского), распространение импульса возбуждения по нервному волокну, волны химической сигнализации в колониях некоторых микроорганизмов, автоволны в сегнетоэлектрических и полупроводниковых плёнках, популяционные автоволны, распространение эпидемий и генов и многие другие явления.

Нервный импульс, служащий типичным примером автоволны в активной среде с восстановлением, изучался Гельмгольцем ещё в 1850 г. Свойства нервного импульса, типичные для простейших автоволновых решений (универсальная форма и амплитуда, не зависящие от начальных условий, и аннигиляция при столкновениях), были установлены в 20-х и 30-х годах XX века.

Рассмотрим двумерную активную среду, состоящую из элементов, каждый из которых может находиться в трёх различных состояниях: покое, возбуждении и рефрактерности. При отсутствии внешнего воздействия элемент находится в состоянии покоя. В результате воздействия, когда концентрация активатора достигнет порогового значения, элемент переходит в возбуждённое состояние, приобретая способность возбуждать соседние элементы. Через некоторое время после возбуждения элемент переключается в состояние рефрактерности, находясь в котором он не может быть возбужден. Затем элемент сам возвращается в исходное состояние покоя, снова приобретая способность переходить в возбуждённое состояние. Передний фронт автоволны (переход из покоя в состояние возбуждения) обычно очень мал: к примеру, для ткани сердца отношение длительности фронта ко всему импульсу примерно 1:330. Волна возбуждения движется по возбудимой среде без затухания, сохраняя постоянной форму и амплитуду. При её прохождении энергетические потери (диссипация) полностью компенсируются за счёт подвода энергии от элементов среды.

Было продемонстрировано[A: 19], что фибрилляцию желудочком можно рассматривать как хаотическое поведение вихрей возбуждения миокарда.
Downgrade Counter