Меню
Главная
Случайная статья
Настройки
|
Аксиома (др.-греч. «утверждение, положение», от — считаю достойным, настаиваю, требую), или постулат[1][2] (от лат. postulatum — букв. требуемое[3]) — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами[4].
Содержание
Назначение
Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и, если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами[5].
В современной науке вопрос об истинности аксиом, лежащих в основе какой-либо теории, решается либо в рамках других научных теорий, либо посредством интерпретации данной теории[6].
Аксиоматизация (или — формализация) теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно на этих аксиомах и не опираться на обычное конкретное значение этих объектов и их отношений.
Выбор аксиом, которые составляют основу конкретной теории, не является единственным. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и евклидовой геометрии.
Набор аксиом называется непротиворечивым, если исходя из аксиом данного набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание.
Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система), в которой можно определить натуральные числа, сложение и умножение, неполна. Это значит, что найдётся бесконечное количество математических утверждений (функций, выражений), ни истинность, ни ложность которых не сможет быть доказана на основании данной системы аксиом. Также, по теореме о неполноте, среди этих невыводимых утверждений будет утверждение о непротиворечивости этой системы.
История
|
|