Меню
Главная
Случайная статья
Настройки
|
Глюон (от англ. gluon, от glue — клей) — элементарная безмассовая частица, фундаментальный бозон[7], квант векторного поля, переносчик сильного взаимодействия[8][9].
Глюоны — векторные калибровочные бозоны, непосредственно отвечающие за сильное цветовое взаимодействие между кварками в квантовой хромодинамике (КХД)[9]. В отличие от фотонов в квантовой электродинамике (КЭД), которые электрически нейтральны и не взаимодействуют друг с другом[10], глюоны сами несут цветовой заряд и поэтому они не только переносят сильное взаимодействие, но и участвуют в нём. Всего существует 8 независимых типов глюонов, что делает КХД значительно более сложной для понимания, чем КЭД.
Содержание
Свойства
Глюоны — переносчики сильного взаимодействия между кварками, которые «склеивают» кварки в адроны. Квантовые числа кварков — электрический заряд, барионное число, аромат — остаются неизменными при испускании и поглощении глюонов, тогда как цвет кварков изменяется[11].
Глюон — квант векторного (то есть обладающего единичным спином и отрицательной внутренней чётностью) поля в КХД. Он не имеет массы. В квантовой теории поля ненарушенная калибровочная инвариантность требует, чтобы калибровочный бозон был безмассовым[3] (эксперимент ограничивает массу глюона сверху значением не более нескольких МэВ[4]). Все эти свойства (а также нулевой электрический заряд) сближают его с фотоном.
В то время как массивные векторные частицы имеют три состояния поляризации, безмассовые векторные калибровочные бозоны, такие, как глюон и фотон, имеют только две возможных поляризации из-за того, что калибровочная инвариантность требует поперечной поляризации.
Глюон обладает нулевым изоспином. Бесцветные глюоны и являются античастицами самим себе, то есть истинно нейтральными частицами. Глюоны, как и кварки, в свободном состоянии в естественных условиях не находятся, они образуют связанные состояния — адроны[12].
История
М. Гелл-Манн и австрийский физик Г. Цвейг в 1964 году выдвинули гипотезу о том, что все адроны с барионным числом В = 0 (мезоны) состоят из пары «кварк и антикварк», а с числом В = 1 (барионы) — состоят из трёх кварков. Независимо друг от друга гипотезу о том, что каждый кварк имеет три различных цветовых состояния, высказали в 1965 году советские физики Н. Н. Боголюбов, Б. В. Струминский, А. Н. Тавхелидзе и американские М. Хан и И. Намбу. В несколько другой форме в 1964 году подобную гипотезу высказал американский физик О. Гринберг[13].
Синтез представлений о цвете кварков в начале 70 годов XX века породил квантовую теорию сильного взаимодействия цветных глюонных и кварковых полей — квантовую хромодинамику.
Первыми ряд работ по данной теме, основанных на идеях симметрии и инвариантности в системе частиц и полей, опубликовали Марри Гелл-Манн, Харальд Фрич, Дж. Цвейг[14][15].
Представление о конфайнменте кварков появилось из-за невозможности наблюдать их в свободном виде. Кварк из протона выделить невозможно, так как между кварками действует очень большая связующая сила. Если, например, попытаться их «развести», в человеческих единицах нужно было бы преодолеть сопротивление, равное 14 тоннам. Эта сила не убывает с расстоянием, оставаясь всегда одной и той же. Теоретическая физика называет эту силу струной, которая натянута между кварками. Если раздвигать кварки всё дальше, в какой-то момент струна лопнет, порождая мезоны, которые состоят из кварков и антикварков. «Цвет» кварка не наблюдаем, физического значения он не имеет. Наблюдаемо только изменение «цвета» кварка от точки к точке. Каждый глюон — это то, что находится непосредственно в протоне. «Жизнь» протона во времени представляется как взаимодействие трёх кварков посредством восьми разновидностей глюонов[16].
После разгона и столкновения протонов начинает «разрастаться» глюонное поле, и в какой-то момент оно рвётся, а в месте разрыва рождается кварк-антикварковая пара. Глюонные поля также могут сталкиваться и рождать «кварк-антикварковые» пары[17].
Кварк-глюонная материя
|
|