Меню

Главная
Случайная статья
Настройки
Граф относительных окрестностей
Материал из https://ru.wikipedia.org

Граф относительных окрестностей — это неориентированный граф, определённый на множестве точек на евклидовой плоскости путём соединения двух точек p и q ребром, когда не существует третьей точки r, которая ближе как к p, так и q, чем p и q друг к другу. Этот граф предложил Годфрид Туссен в 1980 как способ определения структуры на множестве точек, которая отражает человеческое восприятие формы множества[1][2][3].

Содержание

Алгоритмы

Суповит[4] показал, как эффективно построить граф относительных окрестностей за время O(n log n)[5]. Граф можно вычислить за среднее время O (n) для произвольного множества точек равномерно распределённых в единичном квадрате[6]. Граф относительных окрестностей можно вычислить за линейное время из триангуляции Делоне множества точек[7][8].

Обобщения

Поскольку граф определён лишь в терминах расстояний между точками, граф относительных окрестностей может быть определён для множеств точек в пространстве любой размерности[1][9] и для неевклидовых метрик[1][7][10][11].

Связанные графы

Граф относительных окрестностей является примером основанного на линзах[англ.] бета-остова. Это подграф триангуляции Делоне. В свою очередь, евклидово минимальное остовное дерево является его подграфом, откуда следует, что это связный граф.

Граф Уркхарта, образованный удалением наиболее длинного ребра из каждого треугольника в триангуляции Делоне, был первоначально предложен как быстрый метод вычисления графа относительных окрестностей[12]. Хотя граф Уркхарта иногда отличается от графа относительных окрестностей [13], он может быть использован в качестве аппроксимации графу относительных окрестностей[14].

Примечания
  1. 1 2 3 Jaromczyk, Kowaluk, 1991, с. 181–191.
  2. Toussaint, 1980, с. 261–268.
  3. Jaromczyk, Toussaint, 1992, с. 1502–1517.
  4. Supowit, 1983.
  5. Supowit, 1983, с. 428–448.
  6. Katajainen, Nevalainen, Teuhola, 1987, с. 77–86.
  7. 1 2 Jaromczyk, Kowaluk, 1987, с. 233–241.
  8. Lingas, 1994, с. 199–208.
  9. Agarwal, Matouek, 1992, с. 58–65.
  10. O'Rourke, 1982, с. 189–192.
  11. Lee, 1985, с. 327–332.
  12. Urquhart, 1980, с. 556–557.
  13. Toussaint, 1980, с. 860.
  14. Andrade, de Figueiredo, 2001.


Литература
Downgrade Counter