Меню

Главная
Случайная статья
Настройки
Дисперсия света
Материал из https://ru.wikipedia.org

Дисперсия света (разложение света; светорассеяние[1]) — это совокупность явлений, обусловленных зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, что то же самое, зависимостью фазовой скорости света в веществе от частоты (или длины волны). Экспериментально открыта Исааком Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее[2].

Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора. Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Свойства и проявления

Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является различие фазовых скоростей распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и, следовательно, цвета). Обычно, чем меньше длина световой волны, тем больше показатель преломления среды для неё и тем меньше фазовая скорость волны в среде:
  • у света красного цвета фазовая скорость распространения в среде максимальна, а степень преломления — минимальна,
  • у света фиолетового цвета фазовая скорость распространения в среде минимальна, а степень преломления — максимальна.


Однако в некоторых веществах (например, в парах иода) наблюдается эффект аномальной дисперсии, при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров иода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

Белый свет разлагается в спектр в результате прохождения через дифракционную решётку или отражения от неё (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр — равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.

По аналогии с дисперсией света, также дисперсией называются и сходные явления зависимости распространения волн любой другой природы от длины волны (или частоты). По этой причине, например, термин закон дисперсии, применяемый как название количественного соотношения, связывающего частоту и волновое число, применяется не только к электромагнитной волне, но к любому волновому процессу.

Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).

Дисперсия является причиной хроматических аберраций — одних из аберраций оптических систем, в том числе фотографических и видеообъективов.

Огюстен Коши предложил эмпирическую формулу для аппроксимации зависимости показателя преломления среды от длины волны:
,


где  — длина волны в вакууме; a,

Дисперсия света в природе и искусстве
  • Радуга, чьи цвета обусловлены дисперсией, — один из ключевых образов культуры и искусства.
  • Благодаря дисперсии света можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметах или материалах (см. ниже).
  • В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться и/или подчёркиваться.
  • Разложение света в спектр (вследствие дисперсии) при преломлении в призме — довольно распространённая тема в изобразительном искусстве. Например, на обложке альбома The Dark Side of the Moon группы Pink Floyd изображено преломление света в призме с разложением в спектр.


Дисперсия в геммологии

В геммологии дисперсией часто называют конкретную величину: разницу в показателях преломления материала на фраунгоферовых линиях B и G (686,7 нм и 430,8 нм) или C и F (656,3 нм и 486,1 нм). Вещество с высокой дисперсией вызывает так называемую игру света[3][4].

Обобщённая формулировка высоких порядков дисперсии — оптика Лаха — Лагерра

Описание хроматической дисперсии с помощью пертурбативного подхода через коэффициенты Тейлора подходит для задач оптимизации, где необходимо сбалансировать дисперсию от нескольких различных систем. Например, в лазерных усилителях импульсы сначала растягиваются во времени, чтобы избежать оптического повреждения кристаллов. Затем, в процессе усиления энергии, импульсы накапливают неизбежную линейную и нелинейную фазу, проходя через различные материалы. Наконец, импульсы сжимаются в различных типах компрессоров. Для того чтобы сбросить любые остаточные высшие порядки в накопленной фазе, отдельные порядки дисперсии обычно измеряются и балансируются. Для однородных систем такое пертурбативное описание часто не требуется (например, для распространения импульса в волноводах или оптических волокнах). Дисперсионные порядки сводятся к аналитическим уравнениям, которые идентичны преобразованиям типа Лаха — Лагера[5][6].

Порядки дисперсии определяются разложением Тейлора фазы или волнового вектора.





Производные дисперсии для волнового вектора и фазы могут быть выражены как:

,

Производные любой дифференцируемой функции в пространстве длин волн или частот определяются через преобразование Лаха как:



Матричные элементы преобразования являются коэффициентами Лаха:

Записанное для дисперсии групповой скорости GDD, приведённое выше выражение утверждает, что постоянная длины волны GGD будет иметь нулевые высшие порядки. Высшие порядки, полученные из GDD:



Подстановка уравнения (2), выраженного для показателя преломления или оптического пути , в уравнение (1) приводит к аналитическим выражениям для порядков дисперсии. В общем случае дисперсия порядка POD является преобразованием типа Лагерра отрицательного второго порядка:



Матричные элементы преобразований представляют собой беззнаковые коэффициенты Лагерра порядка минус 2 и имеют вид:






Групповой показатель преломления определяется как .



















В явном виде, записанные для фазы , первые десять порядков дисперсии могут быть выражены как функция длины волны с помощью преобразований Лаха (уравнение (2)) в виде:






















См. также

Примечания
  1. Егоров Н. Г. Светорассеяние // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  2. Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
  3. What is gemstone dispersion? International Gem Society (GemSociety.org). Дата обращения: 25 августа 2025.
  4. 1 2


Литература


Ссылки
Downgrade Counter