Меню

Главная
Случайная статья
Настройки
Горизонтальная система координат
Материал из https://ru.wikipedia.org

Горизонтальная система координат[1]:40, или горизонтная система координат[2]:30 — система небесных координат, в которой основной плоскостью является плоскость математического горизонта, а полюсами — зенит и надир. Она применяется при наблюдениях звёзд и движения небесных тел Солнечной системы на местности невооружённым глазом, в бинокль или телескоп с азимутальной установкой[1]:85. Горизонтальные координаты не только планет и Солнца, но и звёзд непрерывно изменяются в течение суток ввиду суточного вращения небесной сферы.

Содержание

Описание

Линии и плоскости

Горизонтальная система координат всегда топоцентрическая. Наблюдатель всегда находится в фиксированной точке на поверхности Земли (отмечена буквой O на рисунке). Будем предполагать, что наблюдатель находится в Северном полушарии Земли на широте . При помощи отвеса определяется направление на зенит (Z), как верхняя точка, в которую направлен отвес, а надир (Z) — как нижняя (под Землёй)[1]:38. Поэтому и линия ZZ, соединяющая зенит и надир, называется отвесной линией[3]:12.

Плоскость, перпендикулярная к отвесной линии в точке O, называется плоскостью математического горизонта. На этой плоскости определяется направление на юг (географический, не магнитный!) и север, например, по направлению кратчайшей за день тени от гномона. Кратчайшей она будет в истинный полдень, и линия NS, соединяющая юг с севером, называется полуденной линией[1]:39. Точки востока (E) и запада (W) берутся отстоящими на 90° от точки юга соответственно против и по ходу часовой стрелки, если смотреть из зенита. Таким образом, NESW — плоскость математического горизонта.

Плоскость, проходящая через полуденную и отвесную линии (ZNZS), называется плоскостью небесного меридиана, а плоскость, проходящая через небесное тело — плоскостью вертикала данного небесного тела. Большой круг, по которому она пересекает небесную сферу, называется вертикалом небесного тела[1]:40.

Координаты

В горизонтальной системе координат одной координатой является либо высота светила 

Высотой h светила называется дуга вертикала светила от плоскости математического горизонта до направления на светило. Высоты отсчитываются в пределах от 0° до +90° к зениту и от 0° до 90° к надиру[1]:40.

Зенитным расстоянием

Азимутом (внимание, в геодезии и навигации азимуты отсчитываются от точки севера[4]).

Особенности изменения координат небесных тел

За сутки звезда (а также в первом приближении — тело Солнечной системы) описывает круг, перпендикулярный оси мира (PP), которая на широте 
  • заходящие и восходящие[3]:16 (
  • незаходящие[3]:16 (
  • невосходящие[3]:16 (


Максимальная высота

Переход к первой экваториальной

В дополнение к плоскости горизонта NESW, отвесной линии ZZ и оси мира PP начертим небесный экватор, перпендикулярный к PP в точке O. Обозначим t — часовой угол светила,  — его склонение, R — само светило, z — его зенитное расстояние. Тогда горизонтальную и первую экваториальную систему координат свяжет сферический треугольник PZR, называемый первым астрономическим треугольником[1]:68, или параллактическим треугольником[2]:36. Формулы перехода от горизонтальной системы координат к первой экваториальной системе координат имеют следующий вид[5]:18:


Последовательность применения формул сферической тригонометрии к сферическому треугольнику PZR такая же, как при выводе подобных формул для эклиптической системы координат: теорема косинусов, теорема синусов и формула пяти элементов[2]:37. По теореме косинусов имеем:


Первая формула получена. Теперь к тому же сферическому треугольнику применяем теорему синусов:


Вторая формула получена. Теперь применяем к нашему сферическому треугольнику формулу пяти элементов:


Третья формула получена. Итак, все три формулы получены из рассмотрения одного сферического треугольника.

Переход от первой экваториальной

Формулы перехода от первой экваториальной системы координат к горизонтальной системе координат выводятся при рассмотрении того же сферического треугольника, применяя к нему те же формулы сферической тригонометрии, что и при обратном переходе[2]:37. Они имеют следующий вид[5]:17:


Примечания
  1. 1 2 3 4 5 6 7 8 Цесевич В. П. Что и как наблюдать на небе. — 6-е изд. — М.: Наука, 1984. — 304 с.
  2. 1 2 3 4 Белова Н. А. Курс сферической астрономии. — М.: Недра, 1971. — 183 с.
  3. 1 2 3 4 Воронцов-Вельяминов Б. А. Астрономия: Учеб. для 10 кл. сред. шк. — 17-е изд. — М.: Просвещение, 1987. — 159 с.
  4. Н.Александрович «Горизонтальная система координат» Архивная копия от 20 марта 2012 на Wayback Machine
  5. 1 2 Балк М. Б., Демин В. Г., Куницын А. Л. Сборник задач по небесной механике и космодинамике. — М.: Наука, 1972. — 336 с.


См. также
Downgrade Counter