Меню

Главная
Случайная статья
Настройки
Эффект Казимира
Материал из https://ru.wikipedia.org

Эффект Казимира (эффект Казимира — Полдера) — эффект, заключающийся во взаимном притяжении проводящих незаряженных тел под действием квантовых флуктуаций в вакууме. Чаще всего речь идёт о двух параллельных незаряженных зеркальных поверхностях, размещённых на близком расстоянии, однако эффект Казимира существует и при более сложных геометриях.

Для оптически анизотропных тел также возможно возникновение крутящего момента Казимира, зависящего от взаимной ориентации главных оптических осей этих тел[1].

Причиной эффекта Казимира являются энергетические колебания физического вакуума из-за постоянного рождения и исчезновения в нём виртуальных частиц. Эффект был предсказан голландским физиком Хендриком Казимиром (Hendrik Casimir, 1909—2000) в 1948 году[2], а позднее в 1957 году[3][4] был подтверждён экспериментально.

Содержание

Суть эффекта

Согласно квантовой теории поля, физический вакуум представляет собой не абсолютную пустоту. В нём постоянно рождаются и исчезают пары виртуальных частиц и античастиц — происходят постоянные колебания (флуктуации) связанных с этими частицами полей. В частности, происходят колебания связанного с фотонами электромагнитного поля. В вакууме рождаются и исчезают виртуальные фотоны, соответствующие всем длинам волн электромагнитного спектра.

Для внесения в вакуум макроскопических тел, даже не имеющих заряда, необходимо выполнить определённую работу, которая требуется для изменения граничных условий для поля вакуумных флуктуаций. Модуль этой работы равен разнице в энергиях нулевых колебаний вакуума в отсутствие и в присутствие тел[5].

Например, в пространстве между близко расположенными зеркальными поверхностями граничные условия для поля флуктуаций по сравнению с вакуумом без тел меняются следующим образом. На определённых резонансных длинах (целое или полуцелое число раз укладывающихся между поверхностями) электромагнитные волны усиливаются. На всех остальных длинах, которых больше, напротив, эти волны подавляются (то есть подавляется рождение соответствующих виртуальных фотонов). Происходит это вследствие того, что в пространстве между пластинами могут существовать только стоячие волны, амплитуда которых на пластинах равна нулю. В результате давление виртуальных фотонов изнутри на две поверхности оказывается меньше, чем давление на них извне, где рождение фотонов ничем не ограничено. Чем ближе друг к другу поверхности, тем меньше длин волн между ними оказывается в резонансе и больше — оказывается подавленными. Такое состояние вакуума в литературе иногда называется вакуумом Казимира. Как следствие, растёт сила притяжения между поверхностями.

Явление можно образно описать как «отрицательное давление», когда вакуум лишён не только обычных, но и части виртуальных частиц, то есть «откачали всё и ещё чуть-чуть». С этим явлением связан также эффект Шарнхорста.

Аналогия

Явление присасывания кораблей сходно с эффектом Казимира и наблюдалось ещё в XVIII веке французскими моряками. Когда два корабля, раскачивающиеся из стороны в сторону в условиях сильного волнения, но слабого ветра, оказывались на расстоянии примерно 40 метров и менее, то в результате интерференции волн в пространстве между кораблями прекращалось волнение. Спокойное море между кораблями создавало меньшее давление, чем волнующееся с внешних бортов кораблей. В результате возникала сила, стремящаяся столкнуть корабли бортами. В качестве контрмеры руководство по мореплаванию начала 1800-х годов рекомендовало обоим кораблям послать по шлюпке с 10—20 моряками, чтобы растолкать корабли. За счёт такого эффекта (в числе прочих) сегодня в океане образуются мусорные острова.

Также эффект напоминает кинетическую теорию гравитации Лесажа, заключающуюся в сталкивании тел друг с другом под давлением неких гипотетических частиц.

Величина силы Казимира

Сила притяжения, действующая на единицу площади для двух параллельных идеальных зеркальных поверхностей, находящихся в абсолютном вакууме, составляет[6]


где
 — приведённая постоянная Планка,
 — скорость света в вакууме,
 — расстояние между поверхностями.


Отсюда видно, что сила Казимира крайне мала. Расстояние, на котором она начинает быть сколько-нибудь заметной, составляет порядка нескольких микрометров. Однако, будучи обратно пропорциональной 4-й степени расстояния, она очень быстро растёт с уменьшением последнего. На расстояниях порядка 10 нм — сотни размеров типичного атома — давление, создаваемое эффектом Казимира, оказывается сравнимым с атмосферным.

В случае более сложной геометрии (например, взаимодействия сферы и плоскости или взаимодействия более сложных объектов) численное значение и знак коэффициента меняется[7], таким образом сила Казимира может быть как силой притяжения, так и силой отталкивания.

Несмотря на то, что в формуле для силы Казимира отсутствует постоянная тонкой структуры  — основная характеристика электромагнитного взаимодействия, — этот эффект, тем не менее, имеет электромагнитное происхождение. Как показано в заметке[8], при учёте конечной проводимости пластин появляется зависимость от , а стандартное выражение для силы появляется в предельном случае , где  — плотность электронов в пластинке.

Графен

Эффект Казимира определяет взаимодействие любых электрически нейтральных объектов на малых расстояниях (порядка микрометра и меньше). В случае реалистичных материалов величина взаимодействия обусловливается объёмными свойствами материала (диэлектрическая проницаемость в случае диэлектриков, проводимость для металлов). Однако расчёты показывают, что и для моноатомных слоёв графена сила Казимира может быть сравнительно велика, а наблюдение эффекта может быть доступно экспериментально[9][10].

История открытия
Downgrade Counter