Меню
Главная
Случайная статья
Настройки
|
Квадратура параболы (греч. ) — монография по геометрии, написанная Архимедом в III веке до н. э. и адресованная его александрийскому знакомому Досифею.
Работа содержит 24 утверждения относительно парабол, собранных в два доказательства. В этих доказательствах Архимед показывает, что площадь сегмента параболы, то есть области между параболой и прямой, равна 4/3 площади определённого треугольника, вписанного в сегмент.
Это одна из наиболее известных работ Архимеда. Учёный сумел разбить площадь на бесконечное число треугольников, площади которых образуют геометрическую прогрессию[1]. Он вычислил сумму этого геометрического ряда и доказал, что она точно равна площади сегмента параболы.
Это доказательство является примером использования апагогии у математиков древней Греции, и решение Архимеда оставалось непревзойдённым вплоть до развития интегрирования в XVII веке, когда было заменено квадратурной формулой Кавальери[2].
Содержание
Основная теорема
Чтобы найти площадь параболического сегмента, Архимед рассматривает определённый вписанный треугольник. Основанием этого треугольника является заданная хорда параболы, а третьей вершиной служит такая точка параболы, что касательная к параболе в этой точке параллельна хорде. Лемма первой работы утверждает, что прямая из третьей вершины, параллельная оси, делит хорду на два равных отрезка. Основная теорема гласит, что площадь параболического сегмента равна 4/3 площади вписанного треугольника.
Структура текста
Конические сечения, такие, как парабола, были хорошо известны уже во времена Архимеда благодаря работам Менехма за век до этого. Однако до прихода дифференцирования и интегрирования не существовало простых средств нахождения площади конических сечений. Архимед дал первое проверенное решение этой проблемы, сфокусировавшись на площади сегмента, ограниченного параболой и хордой[3].
Архимед дал два доказательства основной теоремы, одно из которых использует абстрактную механику, а другое основано на чистой геометрии. В первом доказательстве Архимед рассматривает рычаг, находящийся в равновесии под действием силы тяжести, с имеющими массу сегментами параболы и треугольником, подвешенными вдоль плеч рычага на определённых расстояниях от точки опоры[4]. Если центр тяжести треугольника известен, условие равновесия рычага даёт площадь сегмента параболы в терминах площади треугольника с тем же основанием и высотой[5]. Архимед здесь отклоняется от процедуры, описанной в трактате О равновесии плоскостей[англ.], в том, что центры тяжести фигур находятся на уровне ниже уровня баланса[6]. Второе и более известное доказательство опирается только на геометрию, в частности на формулу суммы членов геометрической прогрессии.
Из двадцати четырёх утверждений первые три приведены без доказательства и ссылаются на работу Евклида «Конические элементы» (утерянная работа Евклида по коническим сечениям). Утверждения 4 и 5 устанавливают элементарные свойства параболы. Утверждения 6–17 представляют собой доказательство основной теоремы на основе механики. Утверждения 18–24 предоставляют геометрическое доказательство.
Геометрическое доказательство
Разбиение параболического сегмента
Основная идея доказательства — разбиение параболического сегмента на бесконечное число треугольников, как показано на рисунке справа. Каждый из этих треугольников вписан в свой сегмент тем же способом, что и синий треугольник.
Площади треугольников
В утверждениях 18–21 Архимед доказывает, что площадь каждого зелёного треугольника равна одной восьмой площади синего треугольника. С точки зрения современной геометрии, данный факт является следствием того, что ширина зелёного треугольника равна половине ширины синего, а его высота в четыре раза меньше[7]:
По тому же принципу площадь каждого жёлтого треугольника равна одной восьмой площади зелёного, площадь каждого из красных треугольников равна одной восьмой площади жёлтого треугольника и так далее. Используя метод исчерпывания, получаем, что общая площадь параболического сегмента задаётся выражением:
Здесь представляет собой площадь большого синего треугольника, второй член — суммарную площадь двух зелёных треугольников, третий член — суммарную площадь четырёх жёлтых треугольников и так далее. Это выражение можно упростить:
Сумма ряда
Для завершения доказательства Архимед показал, что
Формула выше является суммой геометрического ряда, каждый последующий член которого вчетверо меньше предыдущего.
Архимед вычислил сумму геометрическим методом[8], проиллюстрированным на рисунке. На рисунке изображён единичный квадрат, который разбивается на бесконечное число меньших квадратов. Каждый последующий фиолетовый квадрат имеет площадь вчетверо меньше площади предыдущего квадрата, а полная сумма площадей фиолетовых квадратов равна сумме
Однако набор фиолетовых квадратов равен каждому из наборов жёлтых квадратов, а потому покрывает 1/3 площади единичного квадрата. Отсюда следует, что ряд, приведённый выше, сходится к 4/3 (поскольку 1+1/3 = 4/3).
См. также
Примечания
- Swain, Dence, 1998, с. 123–130.
- Cavalieri's quadrature formula (англ.) // Wikipedia. — 2021-02-26.
- Towne, 2018.
- Quadrature of the parabola, Introduction . web.calstatela.edu. Дата обращения: 3 июля 2021. Архивировано 6 августа 2019 года.
- The Illustrated Method of Archimedes (англ.). Scribd. Дата обращения: 3 июля 2021. Архивировано 2 ноября 2021 года.
- Dijksterhuis, E. J. Quadrature of the Parabola (англ.) 336—345. Archimedes (1987). Дата обращения: 2 ноября 2021. Архивировано 2 ноября 2021 года.
- Зелёный треугольник имеет половину ширины голубого треугольника по построению. Утверждение относительно высоты вытекает из геометрических свойств параболы и легко доказывается методами современной аналитической геометрии.
- Строго говоря, Архимед вычислил частичные суммы этого ряда и использовал аксиому Архимеда как аргумент, что частичные суммы становятся произвольно близки к 4/3. Это логически эквивалентно современной идее суммирования бесконечного ряда.
Литература
Литература для дальнейшего чтения
Ссылки
|
|