Меню
Главная
Случайная статья
Настройки
|
Космический лифт — концепция гипотетического инженерного сооружения для безракетного запуска грузов в космос. Конструкция основана на применении троса, протянутого от поверхности планеты к орбитальной станции, находящейся на геостационарной орбите. Впервые подобную мысль высказал Константин Циолковский в 1895 году[1][2], детальную разработку идея получила в трудах Юрия Арцутанова.
Трос удерживается одним концом на поверхности планеты (Земли), а другим — в неподвижной относительно планеты точке выше геостационарной орбиты (ГСО). По тросу поднимается подъёмник, несущий полезный груз.
От троса требуется чрезвычайно большая прочность на разрыв в сочетании с низкой плотностью. Углеродные нанотрубки по теоретическим расчётам представляются подходящим материалом. Если допустить пригодность их для изготовления троса, то создание космического лифта является решаемой инженерной задачей, хотя и требует использования передовых разработок и больших затрат иного рода. НАСА уже финансирует соответствующие разработки американского Института научных исследований, включая разработку подъёмника, способного самостоятельно двигаться по тросу[3].
Предположительно, такой способ в перспективе может быть на порядки дешевле использования ракет-носителей.
Содержание
Конструкция
Есть несколько вариантов конструкции. Почти все они включают основание (базу), трос (кабель), подъёмники и противовес.
Основание
Основание космического лифта — это место на поверхности планеты, где прикреплён трос и начинается подъём груза. Оно может быть подвижным, размещённым на океанском судне. Преимущество подвижного основания — возможность совершения манёвров для уклонения от ураганов и бурь. Преимущества стационарной базы — более дешёвые и доступные источники энергии, и возможность уменьшить длину троса. Разница в несколько километров троса сравнительно невелика, но может помочь уменьшить требуемую толщину его средней части и длину части, выходящей за геостационарную орбиту. Дополнительно к основанию может быть размещена площадка на стратостатах для уменьшения веса нижней части троса с возможностью изменения высоты для избежания наиболее бурных потоков воздуха, а также гашения излишних колебаний по всей длине троса.
Трос
Силы в тросе
Прежде чем искать материал определим силу в каждой точке троса. 1 — сила тяготения, убывающая с расстоянием от Земли. 2 — центробежная сила вращения. 3 — сила Кориолиса, 4 — ветра, давление воздушных масс. 5 — сила натяжения двигателями в космосе. Трос должен быть изготовлен из материала с чрезвычайно высоким отношением предела прочности к удельной плотности. Космический лифт будет экономически оправдан, если можно будет производить в промышленных масштабах за разумную цену трос плотности, сравнимой с графитом, и прочностью около 65—120 гигапаскалей. Для сравнения, прочность большинства видов стали — около 1 ГПа, и даже у прочнейших её видов — не более 5 ГПа, причём сталь тяжела. У гораздо более лёгкого кевлара прочность в пределах 2,6—4,1 ГПа, а у кварцевого волокна — до 20 ГПа и выше. Теоретическая прочность алмазных волокон может быть немного выше.
Углеродные нанотрубки должны, согласно теории, иметь прочность на растяжение гораздо выше, чем требуется для космического лифта. Однако технология их получения в промышленных количествах и сплетения их в кабель только начинает разрабатываться. Теоретически их прочность должна быть более 120 ГПа, но на практике самая высокая прочность на растяжение однослойной нанотрубки была 52 ГПа, а в среднем они ломались в диапазоне 30—50 ГПа. Самая прочная нить, сплетённая из нанотрубок, будет менее прочной, чем её компоненты. Исследования по улучшению чистоты материала трубок и по созданию разных их видов продолжаются.
В эксперименте учёных из университета Южной Калифорнии (США) однослойные углеродные нанотрубки продемонстрировали удельную прочность, в 117 раз превышающую показатели стали и в 30 — кевлар. Удалось выйти на показатель в 98,9 ГПа, максимальное значение длины нанотрубки составило 195 мкм[4]. Эксперименты учёных из Технологического университета Сиднея позволили создать графеновую бумагу[5]. Испытания образцов показали, что плотность материала в пять-шесть раз ниже, чем у стали, при этом прочность на разрыв в десять раз выше, чем у углеродистой стали. При этом графен является хорошим проводником электрического тока, что позволяет использовать его для передачи мощности подъёмнику в качестве контактной шины. В июне 2013 года инженеры из Колумбийского университета США сообщили о новом прорыве: благодаря новой технологии получения графена удаётся получать листы с размером по диагонали в несколько десятков сантиметров и прочностью лишь на 10 % меньше теоретической[6].
Технология плетения таких волокон ещё только зарождается. По заявлениям некоторых учёных[7], даже углеродные нанотрубки никогда не будут достаточно прочны для изготовления троса космического лифта.
Космический лифт должен выдерживать по крайней мере свой вес, весьма немалый из-за длины троса. Утолщение, с одной стороны, повышает прочность троса, с другой — прибавляет его вес, а, следовательно, и требуемую прочность. Нагрузка на него будет различаться в разных местах: в одних случаях участок троса должен выдерживать вес сегментов, находящихся ниже, в других — выдерживать центробежную силу, удерживающую верхние части троса на орбите. Для удовлетворения этому условию и для достижения оптимальности троса в каждой его точке толщина его будет непостоянной.
Можно показать, что с учётом гравитации Земли и центробежной силы (но не учитывая меньшее влияние Луны и Солнца) сечение троса в зависимости от высоты будет описываться следующей формулой:
Здесь — площадь сечения троса как функция расстояния от центра Земли.
В формуле используются следующие константы:
- — площадь сечения троса на уровне поверхности Земли.
- — плотность материала троса.
- — предел прочности материала троса.
- — круговая частота вращения Земли вокруг своей оси, 7,292105 радиан в секунду.
- — расстояние между центром Земли и основанием троса. Оно приблизительно равно радиусу Земли — 6378 км.
- — ускорение свободного падения у основания троса, 9,780 м/с.
Это уравнение описывает трос, толщина которого сначала экспоненциально увеличивается, потом её рост замедляется на высоте нескольких земных радиусов, а потом она становится постоянной, достигнув в конце концов геостационарной орбиты. После этого толщина снова начинает уменьшаться.
Таким образом, отношение площадей сечений троса у основания и на ГСО (r = 42 164 км) есть:
Подставив сюда плотность и прочность для различных материалов и разного диаметра троса на уровне Земли, получим таблицу диаметров троса на уровне ГСО. Расчёт вёлся из условия, что лифт будет стоять «сам по себе», без нагрузки — поскольку материал троса уже испытывает растяжение от собственного веса (причём эти нагрузки близки к максимально допустимым для данного материала).
Сечение троса на ГСО, в зависимости от его сечения на уровне Земли, для различных материалов (рассчитана по последней формуле), м2[источник? (обс.)]
Материал
|
Плотность , кг/м
|
Предел прочности , 109 Па
|
Сечение троса на уровне Земли
|
1 м2 |
0,1 м2 |
0,01 м2 |
1000 мм2
|
Сталь Ст3 горячекатаная
|
7760
|
0,37
|
1,31·10440
|
1,31·10439
|
1,31·10438
|
1,31·10437
|
Сталь высоколегированная 30ХГСА
|
7780
|
1,4
|
4,14·10116
|
4,14·10115
|
4,14·10114
|
4,14·10113
|
Паутина
|
1000
|
2,5
|
248·106
|
24,8·106
|
2,48·106
|
0,248·106
|
Углеволокно
|
1900
|
4
|
9269·106
|
926,9·106
|
92,69·106
|
9,269·106
|
Углеродные нанотрубки
|
1900
|
90
|
2,773
|
2,773·101
|
2,773·102
|
2,773·103
|
Из таблицы следует, что построить лифт из современных конструкционных сталей нереально. Единственный выход — искать материалы с более низкой плотностью и очень высокой прочностью.
Например, в таблицу включена паутина (паучий шёлк). Существуют различные экзотические проекты по добыче паутины на «паучьих фермах»[8]. В последнее время
Ещё одно перспективное направление — углеволокно и углеродные нанотрубки. Углеволокно успешно применяется в промышленности уже сегодня. Нанотрубки обладают примерно в 20 раз большей прочностью, но технология получения этого материала пока не вышла из лабораторий[11]. Таблица строилась из предположения, что плотность троса из нанотрубок такая же, как из углеволокна.
Ниже перечислены ещё несколько экзотических способов построения космического лифта:
- Поднять повыше основание троса. Из-за наличия экспоненты в уравнении даже небольшое поднятие основания позволит сильно понизить толщину троса. Предлагаются башни высотой до 100 км[12]
- Сделать основание лифта подвижным. Движение даже со скоростью 100 м/с уже даст выигрыш в круговой скорости на 20 % и сократит длину кабеля на 20—25 %, что облегчит его на 50 и более процентов.
- Вместо троса использовать условные силовые линии магнитного поля Земли Магнитный «Космический лифт».
- Использовать секции с воздушными шарами с интервалом несколько километров для разгрузки троса. Понадобится дополнительная система поддержания давления газа в шарах, однако, такой подход позволит существенно снизить требования к плотности материала троса. Ещё один недостаток такого подхода — небольшая максимальная высота, при которой шары могут обеспечивать подъёмную силу. Максимальная зарегистрированная высота полёта стратостата составляет 41,4 км.
Противовес
|
|