Меню

Главная
Случайная статья
Настройки
Коэффициент пропускания
Материал из https://ru.wikipedia.org

Коэффициент пропускания — безразмерная физическая величина, равная отношению потока излучения , прошедшего через среду, к потоку излучения , упавшему на её поверхность[1]:


В общем случае значение коэффициента пропускания [2] тела зависит как от свойств самого тела, так и от угла падения, спектрального состава и поляризации излучения.

Численно коэффициент пропускания выражают в долях или в процентах.

Коэффициент пропускания неактивных сред всегда меньше 1. В активных средах коэффициент пропускания больше или равен 1, при прохождении излучения через такие среды происходит его усиление. Активные среды используются в качестве рабочих сред лазеров[3][4][5][6].

Коэффициент пропускания связан с оптической плотностью соотношением:


Сумма коэффициента пропускания и коэффициентов отражения, поглощения и рассеяния равна единице. Это утверждение следует из закона сохранения энергии.

Содержание

Производные, связанные и родственные понятия

Вместе с понятием «коэффициент пропускания» широко используются и другие созданные на его основе понятия. Часть из них представлена ниже.

Коэффициент направленного пропусканияTr{\displaystyle T_{r}}

Коэффициент направленного пропускания равен отношению потока излучения, прошедшего сквозь среду, не испытав рассеяния, к потоку падающего излучения.

Коэффициент диффузного пропусканияTd{\displaystyle T_{d}}

Коэффициент диффузного пропускания равен отношению потока излучения, прошедшего сквозь среду и рассеянного ею, к потоку падающего излучения.

В отсутствие поглощения и отражений выполняется соотношение:


Спектральный коэффициент пропусканияT{\displaystyle T_{\lambda }}

Коэффициент пропускания монохроматического излучения называют спектральным коэффициентом пропускания. Выражение для него имеет вид:


где и  — потоки падающего на среду и прошедшего через неё монохроматического излучения соответственно.

Коэффициент внутреннего пропусканияTi{\displaystyle T_{i}}

Коэффициент внутреннего пропускания отражает только те изменения интенсивности излучения, которые происходят внутри среды, то есть потери из-за отражений на входной и выходной поверхностях среды им не учитываются.

Таким образом, по определению:


где  — поток излучения, вошедшего в среду, а  — поток излучения, дошедшего до выходной поверхности.

С учетом отражения излучения на входной поверхности соотношение между потоком излучения , вошедшего в среду, и потоком излучения , падающим на входную поверхность, имеет вид:


где  — коэффициент отражения от входной поверхности.

На выходной поверхности также происходит отражение, поэтому поток излучения , падающего на эту поверхность, и поток , выходящий из среды, связаны соотношением:


где  — коэффициент отражения от выходной поверхности. Соответственно, выполняется:


В результате для связи и получается:


Коэффициент внутреннего пропускания обычно используется не при описании свойств тел, как таковых, а как характеристика материалов, преимущественно оптических[7].

Спектральный коэффициент внутреннего пропусканияTi,{\displaystyle T_{i,\lambda }}

Спектральный коэффициент внутреннего пропускания представляет собой коэффициент внутреннего пропускания для монохроматического света.

Интегральный коэффициент внутреннего пропусканияTA{\displaystyle T_{A}}

Интегральный коэффициент внутреннего пропускания для белого света стандартного источника A (с коррелированной цветовой температурой излучения T=2856 K) рассчитывается по формуле[7][8]:


или следующей из неё:


где  — спектральная плотность потока излучения, вошедшего в среду,  — спектральная плотность потока излучения, дошедшего до выходной поверхности, а  — относительная спектральная световая эффективность монохроматического излучения для дневного зрения[9].

Аналогичным образом определяются интегральные коэффициенты пропускания и для других источников света.

Интегральный коэффициент внутреннего пропускания характеризует способность материала пропускать свет, воспринимаемый человеческим глазом, и является поэтому важной характеристикой оптических материалов[7].

Спектр пропускания

Спектр пропускания — это зависимость коэффициента пропускания от длины волны или частоты (волнового числа, энергии кванта и т. д.) излучения. Применительно к свету такие спектры называют также спектрами светопропускания.

Спектры пропускания являются первичным экспериментальным материалом, получаемым при исследованиях, выполняемых методами абсорбционной спектроскопии. Такие спектры представляют и самостоятельный интерес, например, как одна из основных характеристик оптических материалов[10].

См. также

Примечания
  1. Пропускания коэффициент // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1994. — Т. 4. — С. 149. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  2. ГОСТ 8.654-2016 допускает также использование греческой
  3. ГОСТ 15093-90 «Лазеры и устройства управления лазерным излучением. Термины и определения».
  4. Справочник по лазерам. Пер. с англ. под ред. А. М. Прохорова. Тт. 1—2. — М., 1978.
  5. Звелто О. Физика лазеров. Пер. с англ. 2-е изд. — М., 1984.
  6. Карлов Н. В. Лекции по квантовой электронике. — М., 1983.
  7. 1 2 3
  8. ГОСТ 8.332-2013 «Государственная система обеспечения единства измерений. Световые измерения. Значения относительной спектральной световой эффективности монохроматического излучения для дневного зрения. Общие положения»


Литература
  • ГОСТ 8.654-2016 «Государственная система обеспечения единства измерений. Фотометрия. Термины и определения»
  • ГОСТ 7601-78 «Физическая оптика. Термины, буквенные обозначения и определения основных величин»
  • ГОСТ Р 8.829-2013 «Государственная система обеспечения единства измерений. Методика измерений оптической плотности (коэффициента пропускания) и мутности пластин и пленок из полимерных материалов»
Downgrade Counter