Меню

Главная
Случайная статья
Настройки
Лемма Ферма
Материал из https://ru.wikipedia.org

Лемма Ферма — одно из базовых утверждений классического анализа: производная дифференцируемой функции в точке локального экстремума равна нулю.

Выдвинуто Николаем Орезмским в его учении о широтах и долготах[1]; у Ньютона этот факт упоминался как «принцип остановки»[2]: «когда величина есть наибольшая или наименьшая из всех возможных, то она в этот момент не течёт ни вперёд, ни назад».

В современной нотации для функции , имеющей во внутренней точке области определения локальный экстремум и имеющей односторонние производные (конечные или бесконечные), утверждение формулируется следующим образом:

В частности, если функция имеет в производную, то .

Производная дифференцируемой функции в точке локального экстремума равна нулю. Её касательная в этой точке параллельна оси абсцисс. Обратное, вообще говоря, неверно, то есть из равенства нулю производной в некоторой точке не следует, что это точка экстремума (вместо этого она может быть точкой перегиба).

Примеры

Для точка  — локальный минимум, и:
,


(при этом сама функция не является дифференцируемой в точке ).

Для точка  — локальный минимум, и .

Для производная в нуле обращается в нуль (), но точка не является точкой локального экстремума.

Примечания
  1. Исаак Ньютон. Примечания переводчика // Исаак Ньютон. Математические работы = Isaaci Newtoni, Opuscula mathematica, philosophica et philologica, t. I, Lausannae et Geuevae 1744 / Перевод с латинского, вводная статья и комментарии Д. Д. Мордухай-Болтовского.. — М.Л.: ОНТИ, 1937. — С. 318. — 452 с. — (Классики естествознания). Архивировано 27 февраля 2011 года. Архивированная копия. Дата обращения: 17 января 2011. Архивировано 27 февраля 2011 года.
Downgrade Counter