Меню
Главная
Случайная статья
Настройки
|
Лемниската Бернулли — плоская алгебраическая кривая. Определяется как геометрическое место точек, произведение расстояний от которых до двух заданных точек (фокусов) постоянно и равно квадрату половины расстояния между фокусами.
Лемниската по форме напоминает арабскую цифру «восемь» или символ бесконечности. Точка, в которой лемниската пересекает саму себя, называется узловой, или двойной.
Содержание
История
Название происходит от др.-греч. — лента, повязка. В Древней Греции «лемнискатой» называли бантик, с помощью которого прикрепляли венок к голове победителя на спортивных играх. Данный вид лемнискаты назван в честь швейцарского математика Якоба Бернулли, положившего начало её изучению.
Уравнение лемнискаты впервые опубликовано в статье Curvatura Laminae Elasticae Якоба Бернулли в журнале Acta eruditorum в 1694 году. Бернулли назвал эту кривую lemniscus; он не знал, что четырнадцатью годами ранее Джованни Кассини уже исследовал более общий случай[1]. Квадратуру лемнискаты впервые выполнил Джюлио-Карло Фаньяно[англ.], опубликовав в 1718 году статью Metodo per misurare la lemniscata и положив тем самым начало изучению эллиптических интегралов, продолженное впоследствии Леонардом Эйлером[2]. Некоторые свойства кривой были также исследованы Якобом Штейнером в 1835 году.
Уравнения
Рассмотрим простейший случай: если расстояние между фокусами равняется , расположены они на оси , и начало координат делит отрезок между ними пополам, то следующие уравнения задают лемнискату:
- параметрическое в прямоугольных координатах:
- в прямоугольных координатах:
Фокусы лемнискаты — и . Возьмём произвольную точку . Произведение расстояний от фокусов до точки есть
- ,
и по определению оно равно :
Возводим в квадрат обе части равенства:
Раскрываем скобки в левой части:
Раскрываем скобки и свёртываем новый квадрат суммы:
Выносим общий множитель и переносим:
Далее можно сделать замену , хотя это не обязательно:
В данном случае — радиус окружности, описывающей лемнискату.
- Проведя несложные преобразования, можно получить явное уравнение:
|
|