Меню
Главная
Случайная статья
Настройки
|
Мажорирование стресса — это стратегия оптимизации, используемая в многомерном шкалировании, где для набора из n элементов размерности m ищется конфигурация X n точек в r(<<m)-мерном пространстве, которая минимизирует так называемую функцию мажорирования . Обычно r равно 2 или 3, то есть (n x r) матрица X перечисляет точки в 2- или 3-мерном евклидовом пространстве, так что результат может быть отражён визуально. Функция является ценой или функцией потерь, которая измеряет квадрат разницы между идеальным (-мерным) расстоянием и актуальным расстоянием в r-мерном пространстве. Она определяется как:
- ,
где является весом для мер между парами точек , является евклидовым расстоянием между и , а является идеальным расстоянием между точками в -мерном пространстве. Заметим, что может быть использовано для спецификации степени доверия в похожести точек (например, можно указать 0, если нет никакой информации для конкретной пары).
Конфигурация , которая минимизирует , даёт график, в котором близкие точки соответствуют близким точкам в исходном -мерном пространстве.
Существует много путей минимизации . Например, Крускал[1] рекомендует итеративный подход кратчайшего спуска. Однако существенно лучший (в терминах гарантированности и скорости сходимости) метод минимизации стресса был предложен Яном де Лейвом[2][3]. Метод итеративной мажоризации де Лейва на каждом шаге минимизирует простую выпуклую функцию, которая ограничивает сверху и касается поверхности в точке , которая называется опорной точкой. В выпуклом анализе такая функция называется мажорирующей функцией. Этот итеративный процесс мажоризации также упоминается как алгоритм SMACOF (англ. Scaling by MAjorizing a COmplicated Function).
Содержание
Алгоритм SMACOF
Функцию стресса можно разложить следующим образом:
Заметим, что первый член является константой , а второй зависит квадратично от X (то есть для матрицы Гессе V второй член эквивалентен tr), а потому относительно прост в вычислениях. Третий же член ограничен величиной
- ,
где имеет элементы
- для
для
.
Данное неравенство доказывается через неравенство Коши — Буняковского, см. статью Борга[4].
Таким образом, мы имеем простую квадратичную функцию , которая мажорирует стресс:
Тогда итеративная процедура мажоризации делает следующее:
- на шаге k мы принимаем
- останавливаемся, если , в противном случае возвращаемся в начало.
Было показано, что этот алгоритм уменьшает стресс монотонно (см. статью де Лейва[3]).
Использование в визуализации графов
Мажорирование стресса и алгоритмы, подобные SMACOF, имеют также приложение в области визуализации графов[5][6]. То есть можно найти более или менее эстетичное расположение вершин для сети или графа путём минимизации функции стресса. В этом случае обычно берётся как расстояние в смысле теории графов между узлами (вершинами) i и j, а веса берутся равными . Здесь выбирается как компромисс между сохранением длинных и коротких идеальных расстояний. Хорошие результаты были показаны для [7].
Примечания
- Kruskal, 1964, с. 1–27.
- Имя нидерландское и родился он в Вубурге (Нидерланды), см. с таким же именем статью «Портрет Яна де Лейва».
- 1 2 de Leeuw, 1977, с. 133–145.
- Borg, Groenen, 1997, с. 152–153.
- Michailidis, de Leeuw, 2001, с. 435–450.
- Gansner, Koren, North, 2004, с. 239–250.
- Cohen, 1997, с. 197–229.
Литература
|
|