Меню
Главная
Случайная статья
Настройки
|
Матрица Тёплица (диагонально-постоянная матрица) — матрица, в которой на всех диагоналях, параллельных главной, стоят равные элементы:
- ,
то есть выполняется соотношение:
- .
Названы в честь немецкого математика Отто Тёплица.
- Пример
Матрица 45:
Содержание
Свойства
Две матрицы Тёплица можно сложить за операций. Матрицу Тёплица можно умножить на вектор за операций, а умножение матриц Тёплица можно провести за операций.
Тёплицева система линейных уравнений, то есть система вида , где — тёплицева матрица, может быть решена методом Левинсона за время [1][2].
Матрицы Тёплица также связаны с рядами Фурье: оператор умножения на многочлен из синусов или косинусов, спроецированный на конечномерное пространство, можно представить такой матрицей.
См. также
Примечания
- Krishna H., Wang Y.. The Split Levinson Algorithm is Weakly Stable (англ.) // SIAM Journal on Numerical Analysis[англ.]. — 1993. — Vol. 30, iss. 5. — P. 1498—1508. — doi:10.1137/0730078.
- Блейхут Р. Э.. Быстрые алгоритмы цифровой обработки сигналов / Пер. с англ. И. И. Грушко. — М.: Мир, 1989. — 448 с. — ISBN 5-09-001009-2.
Литература
|
|