Меню
Главная
Случайная статья
Настройки
|
Межзвёздная среда (МЗС) — вещество и поля, заполняющие межзвёздное пространство внутри галактик[1]. Состав: межзвёздный газ, пыль (1 % от массы газа), межзвёздные электромагнитные поля, космические лучи, а также гипотетическая тёмная материя. Химический состав межзвёздной среды — продукт первичного нуклеосинтеза и ядерного синтеза в звёздах. На протяжении своей жизни звёзды испускают звёздный ветер, который возвращает в среду элементы из атмосферы звезды. А в конце жизни звезды с неё сбрасывается оболочка, обогащая межзвёздную среду продуктами ядерного синтеза.
Пространственное распределение межзвёздной среды нетривиально. Помимо общегалактических структур, таких как перемычка (бар) и спиральные рукава галактик, есть и отдельные холодные и тёплые облака, окружённые более горячим газом. Основная особенность МЗС — её крайне низкая плотность, в среднем 1000 атомов в кубическом сантиметре.
Содержание
История открытия
Природа межзвёздной среды столетиями привлекала внимание астрономов и учёных. Термин «межзвёздная среда» впервые был использован Ф. Бэконом в 1626 году[2]. «О, Небеса между звёздами, они имеют так много общего со звёздами, вращаясь (вокруг Земли) так же, как любая другая звезда». Позднее натурфилософ Роберт Бойль в 1674 году возражал: «Межзвёздная область небес, как полагают некоторые современные эпикурейцы, должна быть пустой».[источник не указан 483 дня]
После создания современной электромагнитной теории некоторые физики постулировали, что невидимый светоносный эфир является средой для передачи световых волн. Они также полагали, что эфир заполняет межзвёздное пространство. Роберт Паттерсон[англ.] в 1862 году писал[3]: «Это истечение является основой вибраций или колебательных движений в эфире, который заполняет межзвёздное пространство».
Применение глубоких фотографических обзоров ночного неба позволило Э. Барнарду получить первое изображение тёмной туманности, которое силуэтом выделялось на фоне звёзд галактики. Однако первое открытие холодной диффузной материи было сделано Д. Гартманом в 1904 году после обнаружения неподвижного спектра поглощения в спектре излучения двойных звёзд, наблюдавшихся с целью проверки эффекта Доплера.
В своём историческом исследовании спектра Дельты Ориона Гартман изучал движение по орбите компаньонов системы Дельты Ориона и свет, приходящий от звезды, и понял, что некоторая часть света поглощается на пути к Земле. Гартман писал, что «линия поглощения кальция очень слаба», а также, что «некоторым сюрпризом оказалось то, что линии кальция на длине волны 393,4 нанометров не движутся в периодическом расхождении линий спектра, которое присутствует в спектроскопически-двойных звёздах». Стационарная природа этих линий позволила Гартману предположить, что газ, ответственный за поглощение, не присутствует в атмосфере Дельты Ориона, но, напротив, находится вне звезды и расположен между звездой и наблюдателем. Это исследование и стало началом изучения межзвёздной среды.
После исследований Гартмана, в 1919 году, Мэри Эгер[англ.] во время изучения линий поглощения на волнах 589,0 и 589,6 нанометров в системах Дельты Ориона и Беты Скорпиона обнаружила в межзвёздной среде натрий[4].
Дальнейшие исследования линий «H» и «K» кальция Билзом[5] (1936) позволили обнаружить двойные и несимметричные профили спектра Эпсилон и Дзета Ориона. Это были первые комплексные исследования межзвёздной среды в созвездии Ориона. Асимметричность профилей линий поглощения была результатом наложения многочисленных линий поглощения, каждая из которых соответствовала атомным переходам (например, линия «K» кальция) и происходила в межзвёздных облаках, каждое из которых имело свою собственную лучевую скорость. Так как каждое облако движется с разной скоростью в межзвёздном пространстве, как по направлению к Земле, так и удаляясь от неё, то в результате эффекта Доплера линии поглощения сдвигались либо в фиолетовую, либо в красную сторону соответственно. Это исследование подтвердило, что материя не распределена равномерно по межзвёздному пространству.
Интенсивные исследования межзвёздной материи позволили У. Пикерингу в 1912 году заявить[6], что «межзвёздная поглощающая среда, которая как показал Каптейн, поглощает только на некоторых волнах, может свидетельствовать о наличии газа и газообразных молекул, которые исторгаются Солнцем и звёздами».
В том же 1912-м году Виктор Гесс открыл космические лучи, энергичные заряженные частицы, которые бомбардируют Землю из космоса. Это позволило заявить некоторым исследователям, что они также наполняют собой межзвёздную среду. Норвежский физик Кристиан Биркеланд в 1913 году писал: «Последовательное развитие нашей точки зрения заставляет предполагать, что всё пространство заполнено электронами и свободными ионами всякого рода. Мы также склонны полагать, что все звёздные системы произошли от заряженных частиц в космосе. И совершенно не кажется невероятным думать, что большая часть массы Вселенной может быть найдена не в звёздных системах или туманностях, но в „пустом“ пространстве»[7]
Торндайк в 1930 году писал: «Было бы ужасно осознавать, что существует непреодолимая пропасть между звёздами и полной пустотой. Полярные сияния возбуждаются заряженными частицами, которые испускает наше Солнце. Но если миллионы других звёзд также испускают заряженные частицы, а это непреложный факт, то абсолютный вакуум вообще не может существовать в галактике»[8].
Наблюдательные проявления
Перечислим основные наблюдательные проявления:
- Наличие светящихся туманностей ионизированного водорода вокруг горячих звёзд и отражательных газопылевых туманностей в окрестностях более холодных звёзд;
- Ослабление света звёзд (межзвёздное поглощение) из-за пыли, входящей в состав межзвёздной среды. А также связанное с этим покраснение света; наличие непрозрачных туманностей;
- Поляризация света на пылинках, ориентированных вдоль магнитного поля Галактики;
- Инфракрасное излучение межзвёздной пыли;
- Радиоизлучение нейтрального водорода в радиодиапазоне на длине волны в 21 см;
- Мягкое рентгеновское излучение горячего разреженного газа;
- Синхротронное излучение релятивистских электронов в межзвёздных магнитных полях;
- Излучение космических мазеров.
Структура МЗС крайне нетривиальна и неоднородна: гигантские молекулярные облака, отражательные туманности, протопланетные туманности, планетарные туманности, глобулы и т. д. Это приводит к широкому спектру наблюдательных проявлений и процессов, происходящих в среде. Далее в таблице приведены свойства основных компонентов среды для диска:
Фаза
|
Температура (K)
|
Концентрация (см3)
|
Масса облаков (M)
|
Размер (пк)
|
Доля занимаемого объёма
|
Способ наблюдения
|
Корональный газ
|
~5105
|
~0,003
|
-
|
-
|
~0,5
|
Рентген, линии поглощения металлов в УФ
|
Яркие области HII
|
~104
|
~30
|
~300
|
~10
|
~104
|
Яркая линия H
|
Зоны HII низкой плотности
|
~104
|
~0,3
|
-
|
-
|
~0,1
|
Линия H
|
Межоблачная среда
|
~104
|
~0,1
|
-
|
-
|
~0,4
|
Линия Ly
|
Тёплые области HI
|
~103
|
~1
|
-
|
-
|
~0,01
|
Излучение HI на |
Мазерные конденсации
|
<100
|
~1010
|
~105
|
~105
|
|
Мазерное излучение
|
Облака HI
|
80
|
~10
|
~100
|
~10
|
~0,01
|
Поглощение HI на |
Гигантские молекулярные облака
|
~20
|
~300
|
~3105
|
~40
|
~3104
|
|
Молекулярные облака
|
10
|
~103
|
~300
|
~1
|
~105
|
Линии поглощения и излучения молекулярного водорода в радио- и инфракрасном спектре.
|
Глобулы
|
10
|
~104
|
~20
|
~0,3
|
~3109
|
Поглощение в оптическом диапазоне.
|
Мазерный эффект
В 1965 году в ряде спектров радиоизлучения были обнаружены очень интенсивные и узкие линии с
Для мазерного излучения необходима инверсная населённость уровней (количество атомов на верхнем резонансном уровне больше, чем на нижнем). Тогда, проходя сквозь вещество, свет с резонансной частотой волны усиливается, а не ослабевает (это и называется мазерным эффектом). Для поддержания инверсной населённости необходима постоянная накачка энергией, поэтому все космические мазеры делятся на два типа:
- Мазеры, ассоциирующиеся с молодыми (возраст 105 лет) горячими OB-звёздами (а возможно, и с протозвёздами) и находящиеся в областях звездообразования.
- Мазеры, связанные с сильно проэволюционировавшими холодными звёздами большой светимости.
Физические особенности
|
|