Евклидово пространство является самым простым примером многообразия.
Более сложным примером может служить поверхность Земли: возможно сделать карту какой-либо области земной поверхности, например, карту полушария, но невозможно составить единую (плоскую и без разрывов) карту всей её поверхности.
Исследования многообразий были начаты во второй половине XIX века, они естественно возникли при изучении дифференциальной геометрии и теории групп Ли. Тем не менее первые точные определения были сделаны только в 30-х годах XX века.
Обычно рассматриваются так называемые гладкие многообразия, то есть те, на которых есть выделенный класс гладких функций — в таких многообразиях можно говорить о касательных векторах и касательных пространствах. Для того чтобы измерять длины кривых и углы, нужна ещё дополнительная структура — риманова метрика.