Меню

Главная
Случайная статья
Настройки
Модель биологического нейрона
Материал из https://ru.wikipedia.org

Модель биологического нейрона — математическое описание свойств нейронов, целью которого является точное моделирование процессов, протекающих в таких нервных клетках. В отличие от подобного точного моделирования, при создании сетей из искусственных нейронов обычно преследуются цели повышения эффективности вычислений.

Содержание

Искусственные нейроны

Простейшая модель сети из искусственных нейронов состоит из вектора нейронов, каждый из которых имеет вектор входных данных, вектор весов синапсов и, опционально, передаточную функцию[1], определяющую результат на выходе нейрона. Подобная модель может быть описана следующей формулой:


где yj — выход

Биологическая абстракция

В случае моделирования поведения биологического нейрона, вместо вышеописанных абстракций (таких, как «вес синапса» и «передаточная функция»), используются модели физических процессов. Вход нейрона может быть описан как течение ионов, ток сквозь клеточную мембрану, возникающий при активации нейротрансмиттерами ионных каналов. В модели вход представлен функцией величины силы тока в зависимости от времени

Метод «интегрировать-и-сработать»

Одна из ранних моделей нейрона была предложена в 1907 Луи Лапиком (фр. Louis Lapicque)[2]. Модель была описана следующей формулой:


которая есть производная по времени закона ёмкости,

Уточнить модель позволяет введение рефрактерного периода
.


Недостаток этого подхода заключается в проявлении свойств независимой от времени памяти. Если модель получает некий заряд, недостаточный для срабатывания, она сохраняет его до следующего срабатывания. Если срабатывания не произойдёт — напряжение будет сохраняться вечно, что явно не соответствует процессам, наблюдаемым в реальной мембране.

Метод «интегрировать-и-сработать» с утечками

Дальнейшее усовершенствование вышеописанной модели решает указанный недостаток вечной памяти путём введения концепции утечки. Метод симулирует диффузию ионов, происходящую на поверхности мембраны в случае недостижения условий для генерации потенциала действия. Улучшенная подобным образом модель может быть описана следующей формулой:


где Rm — значение электрического сопротивления мембраны. Теперь, чтобы сгенерировать потенциал действия, необходимо, чтобы значение тока на входе превысило некоторый порог Ith = Vth / Rm. Иначе происходит утечка, аннулируя любые изменения потенциала. Частота срабатывания принимает следующий вид:


что сходится с предыдущей моделью (без утечки) для больших величин тока[3].

Модель Ходжкина — Хаксли

Эта модель, получившая широкое распространение, основана на кинетической модели Маркова. Модель разработана на основе совместного труда Алана Ходжкина и Эндрю Хаксли, датированного 1952 годом. Их труд основывался на данных, полученных в опытах с гигантским аксоном кальмара[англ.]. Введённая ранее зависимость напряжения от тока доводится до зависимости напряжения от многих входных сигналов:
.


Величина каждого входного сигнала может быть высчитана по закону Ома как


где g(t,V) — параметр проводимости, обратный сопротивлению, который возможно разложить на её постоянное среднее , а также на активационную m и инактивационную h составляющие. Это определит, сколько ионов может пройти сквозь доступные мембранные каналы. Среднее может быть вычислено по формуле:


а составляющие m и h подчиняются кинетикам первого порядка


с сходной динамикой для h, где возможно использовать и m, либо и в качестве определяющих порог параметров.

Подобная форма представления позволяет включить любые токи. Обычно включают «втекающие» Ca2+ и Na+, а также несколько видов «вытекающих» K+, не забывая про ток «утечки». Конечный результат включает как минимум 20 различных параметров, которые необходимо определить и откалибровать для точного функционирования модели. Для сложных систем из большого количества нейронов вычислительная сложность, необходимая для работы модели, достаточно велика. Поэтому для практического применения зачастую требуются значительные упрощения.

Фицхью — Нагумо

В 1961—1962 годах Фицхью и Нагумо предложили упрощения, применимые к модели Ходжкина — Хаксли. Модель описывает «регенеративное самовозбуждение» посредством нелинейной положительной обратной связи напряжения на мембране, а также «восстановление» посредством линейной отрицательной обратной связи напряжения на затворе.


где, как и прежде, имеется мембранное напряжение и входной ток с slower general gate voltage w, а также параметры, найденные экспериментально a = 0.7, b = 0.8, = 1/0.08. Несмотря на неочевидность соответствия модели биологическим исследованиям, она довольно хорошо описывает динамику, имея при этом небольшую сложность[4].




См. также

Примечания
  1. В разных источниках можно встретить и другие названия — такие, как «активационная функция», «логистическая функция», «трансфер-функция».
  2. Abbott, L.F. Lapique’s introduction of the integrate-and-fire model neuron (1907) (англ.) // Brain Research Bulletin[англ.] : journal. — 1999. — Vol. 50, no. 5/6. — P. 303—304. — doi:10.1016/S0361-9230(99)00161-6. — PMID 10643408. Архивировано 13 июня 2007 года.
  3. Koch, Christof; Idan Segev. Methods in Neuronal Modeling (англ.). — 2. — Cambridge, MA: Massachusetts Institute of Technology, 1998. — ISBN 0-262-11231-0.
  4. Izhikevich, Eugene M.; Richard FitzHugh.: . FitzHugh-Nagumo Model. Scholarpedia. Дата обращения: 25 ноября 2007. Архивировано 28 декабря 2012 года.


Внешние ссылки
Downgrade Counter