Меню

Главная
Случайная статья
Настройки
Нептуний
Материал из https://ru.wikipedia.org

93
Нептуний
(237)
5f46d17s2
Нептуний (химический символ — Np, от лат. Neptunium) — химический элемент 3-й группы (по устаревшей классификации — побочной подгруппы третьей группы, IIIB) седьмого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 93. Относится к семейству актиноидов. Один из изотопов (нептуний-237) является родоначальником вымершего радиоактивного ряда нептуния. Нептуний является первым трансурановым элементом.

Простое вещество нептуний — радиоактивный очень тяжёлый металл серебристо-белого цвета.

Содержание

История

До принятия теории расщепления атомного ядра, которая обосновала существование синтезированного позднее реального такого элемента, трижды были сделаны оказавшиеся ошибочными объявления о независимых открытиях элемента 93: «аусоний» (Ausonium) в Италии (Энрико Ферми), «богемий» (Bohemium) в Чехословакии в 1934 и «секваний» (Sequanium) в Румынии, Х. Хулубей в 1939 году.

Нептуний впервые был получен искусственно Э. М. Макмилланом и Ф. Х. Абельсоном в 1940 году при бомбардировке ядра урана нейтронами в циклотроне в Беркли[3]. Первый полученный искусственно трансурановый элемент[4]. Получил название в честь планеты Нептун — последней от Солнца. Реакция синтеза: 238U(n,)239U()239Np. Название нептуния образовано от названия восьмой в Солнечной системе планеты Нептун. Это название было ранее использовано немецко-российским химиком И. Р. Германом (Hans Rudolph Hermann), который в 1877 году утверждал, что открыл новый химический элемент в минерале танталит; в действительности он принял за новый элемент смесь ниобия и тантала[5].

Нахождение в природе

Нептуний обнаруживается в следовых количествах в урановых рудах.

Основная масса нептуния, присутствующего в окружающей среде, возникла в результате атмосферных ядерных взрывов, произведённых начиная с первого в мире испытания ядерного оружия в 1945 году до их запрета согласно Московскому договору 1963 года. Количество нептуния, выброшенного в окружающую среду в результате этих взрывов, оценивается в 2500 кг. Ввиду небольшого периода полураспада большинства изотопов, количество выброшенного нептуния уменьшилось к настоящему времени на несколько порядков.

Природные источники нептуния никакого практического значения не имеют. В настоящее время нептуний извлекается из продуктов длительного облучения урана в ядерных реакторах как побочный продукт при извлечении плутония.

Физические свойства

Полная электронная конфигурация атома нептуния: 1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p65f46d17s2.

Элементарный нептуний — ковкий, сравнительно мягкий металл с серебристым блеском. Это один из самых тяжёлых металлов: по плотности уступает лишь осмию, иридию, платине и рению.

Металлический нептуний имеет три полиморфные модификации: -форма с орторомбической кристаллической решёткой (устойчива ниже 280 °C), -форма с тетрагональной решёткой (стабильна при 280—576 °C) и модификация с кубической гранецентрированной решёткой (при выше 576 °C)[4].

Изотопы

Нептуний не имеет стабильных изотопов, на Земле он встречается лишь в следовых количествах.

Радиоактивные свойства некоторых изотопов нептуния:
Массовое число Период полураспада Тип распада
231 50 минут
232 13 минут электронный захват
233 35 минут (1 %), электронный захват (99 %)
234 4,4 дня (1 %), электронный захват (99 %)
235 410 дней + (1 %), электронный захват (99 %)
236 5000 лет
237 2,20106 лет
238 2,1 дня
239 2,33 дня
240 7,3 минут
241 16 минут


Химические свойства

С сухим воздухом взаимодействует медленно, покрываясь тонкой оксидной плёнкой. При высокой температуре на воздухе он быстро окисляется до NpO2. Пирофорен в мелкодисперсном состоянии[4].

Является химически активным металлом: растворяется в соляной кислоте, образует оксиды, гидриды, галогениды, при нагревании реагирует с азотом, кремнием, фосфором, другими неметаллами. Образует сплавы с ураном, плутонием и другими металлами. В соединениях имеет степени окисления от +3 до +7[4]. В растворах нептуний образует ионы Np3+, Np4+, NpO2+, NpO22+ и NpO53.

Ионы нептуния склонны к гидролизу, диспропорционированию и комплексообразованию. Окрашивают водные растворы в фиолетово-голубой (Np3+), жёлто-зелёный (Np4+), голубовато-зелёный (NpO2+), розовый (NpO22+) и зелёный или коричневый цвета (NpO23+, соответственно в щелочной или кислой среде)[4].

Интересной особенностью катионов нептуноила NpO22+ является их способность притягиваться друг к другу за счет катион-катионных взаимодействий[6].

Получение

Нептуний образуется как побочный продукт в любом реакторе, работающем на уране-235. Основной реакцией в них является деление ядер урана-235 нейтронами, однако часть ядер урана-235 захватывает нейтрон без деления, превращаясь в изотоп уран-236. Он в дальнейшем тоже может захватить нейтрон, образуя короткоживущий бета-радиоактивный уран-237, который с периодом 6,7 суток распадается в нептуний-237. Отработанное ядерное топливо типичного водо-водяного реактора содержит примерно 0,5 кг нептуния-237 на тонну[7].

Другой изотоп, нептуний-239, образуется при захвате нейтрона ураном-238. Сначала при этом образуется изотоп уран-239, который с периодом 23 минуты распадается в нептуний-239. Нептуний-239 имеет период полураспада 2,3 суток, он распадается в плутоний-239.

Нептуний получают восстановлением фторида нептуния(IV) парами бария при 1600 К:


В год в мире производится несколько сот кг нептуния[4].

Применение

Изотоп нептуний-237 используется при получении плутония-238[4]. Нептуний-239 образуется в ядерных реакторах в результате распада урана-239 и в свою очередь распадается с образованием плутония-239. В дальнейшем продукты реакции используются в ядерных реакциях.

Физиологическое действие

При радиоактивном распаде нептуний испускает высокоэнергетические -частицы и -частицы со средней энергией. Физиологическое действие нептуния зависит от его валентного состояния и путей попадания в организм. 60—80 % нептуния откладывается в костях, а радиобиологический период полувыведения нептуния из организма составляет 200 лет. Это приводит к серьёзному радиационному поражению костной ткани. Радиотоксичность нептуния ниже, чем у плутония, ввиду меньшей удельной активности.

Предельно допустимые количества изотопов нептуния в организме: 237Np — 0,06 мккюри (100 мкг), 238Np, 239Np — 25 мккюри (1 нг). Для 237Np ПДК в воздухе рабочих помещений 2,6103 Бк/м.

Примечания
  1. Химическая энциклопедия: в 5 т. / Редкол.: Кнунянц И. Л. (гл. ред.). — Москва: Советская энциклопедия, 1992. — Т. 3. — С. 216. — 639 с. — 50 000 экз. — ISBN 5-85270-039-8.
  2. WebElements Periodic Table of the Elements | Neptunium | crystal structures. Дата обращения: 10 августа 2010. Архивировано 6 июля 2010 года.
  3. Morss L. neptunium (англ.). Encyclopdia Britannica. Дата обращения: 31 декабря 2021.
  4. 1 2 3 4 5 6 7 Нептуний : [арх. 21 февраля 2023] / Мясоедов Б. Ф. // Нанонаука — Николай Кавасила. — М. : Большая российская энциклопедия, 2013. — С. 383—384. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 22). — ISBN 978-5-85270-358-3.
  5. Chemical Notes : The New Metals Ilmenium and Neptunium (англ.) // Nature. — 1877. — Vol. 15. — P. 520–521. — doi:10.1038/015520a0. Архивировано 1 декабря 2024 года.
  6. Nikolai N Krot, Mikhail S Grigoriev. Cation–cation interaction in crystalline actinide compounds // Russian Chemical Reviews. — 2004. — Т. 73, вып. 1. — С. 89–100. — ISSN 0036-021X. — doi:10.1070/RC2004v073n01ABEH000852. Архивировано 3 декабря 2023 года.
  7. Отработанное ядерное топливо тепловых реакторов. Дата обращения: 1 января 2024. Архивировано 15 мая 2021 года.


Ссылки

Литература
Downgrade Counter