Меню

Главная
Случайная статья
Настройки
Неравенство Чебышёва
Материал из https://ru.wikipedia.org

Неравенство Чебышёва (или неравенство Бьенеме — Чебышёва) — неравенство в теории меры и теории вероятностей. Оно было первый раз получено Бьенеме в 1853 году, и позже также Чебышёвым (в статье «О средних величинах» 1867 года).

Неравенство, использующееся в теории меры, является более общим, в теории вероятностей используется его следствие.

Содержание

В теории меры

Неравенство Чебышёва в теории меры описывает взаимосвязь интеграла Лебега и меры. Аналог этого неравенства в теории вероятностей — неравенство Маркова. Неравенство Чебышёва также используется для доказательства вложения пространства в слабое пространство .

Стандартная формулировка

Пусть  — пространство с мерой. Если функция интегрируема и неотрицательна на множестве , то для любой положительной константы мера множества всех из , для которых значение не меньше , сама не больше интеграла от по , делённого на :


Обобщённая формулировка

Стандартной формулировке можно сделать следующее обобщение. Пусть также интегрируема и неотрицательна на множестве , но она к тому же не убывает (не обязательно всюду, достаточно лишь неубывания на всей области значения и в точке ). Тогда мера множества всех из , для которых значение не меньше , сама не больше интеграла от композиции по , делённому на :


Для перехода к стандартной формулировке достаточно взять

Формулировка в терминах пространства L

Пусть . Тогда


В теории вероятностей

Неравенство Чебышёва в теории вероятностей утверждает, что случайная величина в основном принимает значения, близкие к своему среднему. А более точно, оно даёт оценку вероятности того, что случайная величина примет значение, далёкое от своего среднего.

Неравенство Чебышёва является следствием неравенства Маркова.

Формулировка

Пусть случайная величина определена на вероятностном пространстве , а её математическое ожидание и дисперсия конечны. Тогда
, где .


Если , где  — стандартное отклонение и , то получаем
.


В частности, случайная величина с конечной дисперсией отклоняется от среднего больше, чем на стандартных отклонения, с вероятностью меньше . Отклоняется от среднего на стандартных отклонения с вероятностью меньше . Иными словами, случайная величина укладывается в стандартных отклонения с вероятностью и в стандартных отклонения с вероятностью

Для важнейшего случая одномодальных[англ.] распределений неравенство Высочанского — Петунина существенно усиливает неравенство Чебышёва, включая в себя дробь . Таким образом, граница в стандартных отклонения включает значений случайной величины. В отличие от нормального распределения, где стандартных отклонения включают значений случайной величины.

Доказательство

Докажем теорему в обобщённой формулировке


См. также

Литература

Ссылки
Downgrade Counter