Меню

Главная
Случайная статья
Настройки
Нормальная форма Смита
Материал из https://ru.wikipedia.org

Нормальная форма Смита — это диагональная (не обязательно квадратная) матрица над областью главных идеалов, каждый следующий диагональный элемент которой делится на предыдущий. Любую матрицу над областью главных идеалов можно привести к нормальной форме Смита путём умножения слева и справа на обратимые матрицы[1].

Содержание

Формулировка

Для любой матрицы размера над областью главных идеалов существуют такие обратимые над матрицы и , что , где делится на . Здесь обозначает матрицу размера с указанными диагональными элементами и нулями на остальных позициях.

Применения

Из теоремы о нормальной форме Смита следует известная теорема о структуре конечнопорожденных модулей над областями главных идеалов. В частности, если  — кольцо целых чисел, то из нормальной формы Смита получается теорема о строении конечнопорожденных абелевых групп, а если  — кольцо многочленов над алгебраически замкнутым полем , то из нее можно вывести теорему о жордановой форме линейного оператора.

См. также

Примечания
  1. Задачи и теоремы линейной алгебры, 1996, с. 128.


Литература
Downgrade Counter