Меню

Главная
Случайная статья
Настройки
Оптическая теорема
Материал из https://ru.wikipedia.org

Оптическая теорема — соотношение в волновой теории рассеяния, связывающее амплитуду рассеяния и сечение рассеяния .

Оптическая теорема формулируется следующим образом:


где  — амплитуда рассеяния вперёд,  — полное сечение рассеяния,  — волновой вектор падающей волны. Так как теорема является следствием закона сохранения энергии (в квантовой механике — вероятности), то она является довольно общим утверждением, имеющим широкую область применения.

Более общий вид теоремы:


Доказательство

Асимптотический вид амплитуды рассеяния на больших расстояниях:


где  — направление падения частиц,  — направление рассеяния.

Любая линейная комбинация функций с различными направлениями падения также представляет некий возможный процесс рассеяния. Умножив на произвольные коэффициенты и проинтегрировав по всем направлениям , получим такую линейную комбинацию в виде интеграла


Поскольку расстояние велико, то множитель в первом интеграле является быстро осциллирующей функцией направления переменного вектора . Значение интеграла определяется потому в основном областями вблизи тех значений , при которых показатель экспоненты имеет экстремум (). В каждой из этих областей множитель можно вынести за знак интеграла, после чего интегрирование даёт


Перепишем это выражение в более компактном виде, опустив общий множитель :


где


а  — интегральный оператор:


Первый член волновой функции описывает сходящуюся к центру, а второй — расходящуюся от центра волну. Сохранение числа частиц при упругом рассеянии выражается равенством полных потоков частиц в сходящихся и расходящихся волнах. Другими словами, эти волны должны иметь одинаковую нормировку. Для этого оператор рассеяния должен быть унитарным, то есть


или (с учётом выражения для ):


Наконец, учитывая определение , получаем утверждение теоремы:


Литература
Downgrade Counter