Меню

Главная
Случайная статья
Настройки
Осциллятор Дуффинга
Материал из https://ru.wikipedia.org

Осциллятор Дуффинга (англ. Duffing oscillator) — простейшая одномерная нелинейная система. Представляет собой частицу, движущуюся в потенциале вида . При система сводится к обычному гармоническому осциллятору.

Особенностью осциллятора Дуффинга является возможность моделирования хаотической динамики.

Дифференциальное уравнение движения для осциллятора Дуффинга имеет вид:
,
где и соответственно, координата частицы и её масса.


Уравнение впервые было изучено немецким инженером Георгом Дуффингом в 1918 году. Дискретная его версия известна как отображение Дуффинга[англ.].

Решение этого уравнения Дуффинга выражается через эллиптические функции: [1].

Содержание

Зависимость амплитуды от частоты

В отсутствие диссипации (трения), гармонический (линейный) осциллятор, находящийся под действием внешней периодической силы , испытывает резонанс, если частота этой силы совпадает с собственной частотой осциллятора . При близости возбуждающей частоты частоте резонанса осциллятор совершает колебания конечной амплитуды. Последняя пропорциональна и обращается в бесконечность точно при резонансе.

В отличие от гармонического осциллятора, осциллятор Дуффинга под действием внешней периодической силы испытывает бистабильное поведение.

Примечания
  1. Rand, R.H. Lecture notes on nonlinear vibrations // Cornell Universit. — 2012. — С. 13–17. Архивировано 23 сентября 2021 года.


Литература
  • Ivana Kovacic, Michael J. Brennan. The Duffing Equation: Nonlinear Oscillators and their Behaviour. — John Wiley & Sons, 2011. — ISBN 9780470715499.


Ссылки
Downgrade Counter