Меню
Главная
Случайная статья
Настройки
|
Простой элемент обобщенное понятие простого числа на случай произвольного коммутативного моноида с двусторонним сокращением, определяется как не являющийся делителем единицы ненулевой элемент , такой, что произведение может делиться на лишь тогда, когда хотя бы один из элементов или делится на .
Простой элемент всегда неприводим, в общем случае из неприводимости простоты не следует, но в гауссовой полугруппе понятия неприводимости и простоты совпадают, и более того, если всякий неприводимый элемент из является простым, то полугруппа — гауссова.
Понятие естественным образом переносится на области целостности, в этом случае имеет место эквивалентность неприводимости и простоты элемента для факториальных (гауссовых) колец, и из простоты всех неприводимых элементов в области целостности следует, что кольцо факториально. Кроме того, простота элемента эквивалентна простоте главного идеала, им порождённого.
Существуют также обобщения понятий простоты и неприводимости на некоммутативный случай.
Литература
|
|