Меню
Главная
Случайная статья
Настройки
|
Прямая — одно из фундаментальных понятий евклидовой геометрии. При систематическом изложении геометрии прямые линии обычно принимаются за одно из исходных (неопределяемых) понятий[1], их свойства и связь с другими понятиями (например, точки и плоскости) определяются аксиомами геометрии[2].
Прямая, наряду с окружностью, относится к числу древнейших геометрических фигур. Античные геометры считали эти две кривые «совершенными» и поэтому признавали только построения с помощью циркуля и линейки. Евклид описал линию как «длину без ширины», которая «равно лежит на всех своих точках»[3].
Аналоги прямых могут быть определены также в некоторых типах неевклидовых пространств. Если основой построения геометрии служит понятие расстояния между двумя точками пространства, то отрезок прямой можно определить как самую короткую кривую, соединяющую эти точки. Например, в римановой геометрии роль прямых играют геодезические линии, которые являются кратчайшими; на сфере кратчайшими являются дуги больших кругов[4].
Содержание
Свойства прямой в евклидовой геометрии
Участки прямой, ограниченные двумя её точками, называются отрезками.
- Через любую точку можно провести бесконечно много прямых.
- Через любые две несовпадающие точки можно провести единственную прямую.
- Две несовпадающие прямые на плоскости или пересекаются в единственной точке[5], или являются параллельными (следует из предыдущего).
- В трёхмерном пространстве существуют три варианта взаимного расположения двух несовпадающих прямых:
- Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия задается на плоскости уравнением первой степени (линейное уравнение).
Уравнения прямой на плоскости
Общее уравнение прямой
Общее уравнение прямой линии на плоскости в декартовых координатах:
где и — произвольные постоянные а вычисляется как произведение и с обратным знаком учитывая что уравнение отличается на множитель, причём постоянные и не равны нулю одновременно.
Приводя уравнение с целью получения известной а именно домножая на ненулевой коэффициент:
где новые величины и являются координатами точек на осях координат и через которые проходит прямая.
Вычисление и происходит так: для , , для , .
При прямая параллельна оси , при — параллельна оси .
Вектор с координатами называется нормальным вектором, он перпендикулярен прямой.
При прямая проходит через начало координат.
Также уравнение можно переписать в виде
Уравнение прямой с угловым коэффициентом
Уравнение прямой линии, пересекающей ось в точке и образующей угол с положительным направлением оси :
Коэффициент называется угловым коэффициентом прямой.
В этом виде невозможно представить прямую, параллельную оси (Иногда в этом случае формально говорят, что угловой коэффициент «обращается в бесконечность».)
Уравнение прямой в отрезках
Уравнение прямой линии, пересекающей ось в точке и ось в точке :
В этом виде невозможно представить прямую, проходящую через начало координат.
Нормальное уравнение прямой
где — длина перпендикуляра, опущенного на прямую из начала координат, а — угол (измеренный в положительном направлении) между положительным направлением оси и направлением этого перпендикуляра. Если , то прямая проходит через начало координат, а угол задаёт угол наклона прямой.
Пусть дана прямая Тогда и Рассмотрим для этого перпендикуляра его орт Допустим, что угол между и осью равен Так как то можно записать: Теперь рассмотрим произвольную точку Проведём радиус-вектор Теперь найдём проекцию на вектор Следовательно, Это и есть нормальное уравнение прямой.
Если прямая задана общим уравнением то отрезки и отсекаемые ею на осях, угловой коэффициент расстояние прямой от начала координат и выражаются через коэффициенты , и следующим образом:
Во избежание неопределённости знак перед радикалом выбирается так, чтобы соблюдалось условие В этом случае и являются направляющими косинусами положительной нормали прямой — перпендикуляра, опущенного из начала координат на прямую. Если то прямая проходит через начало координат и выбор положительного направления произволен.
Уравнение прямой, проходящей через две заданные несовпадающие точки
Если заданы две несовпадающие точки на вещественной плоскости с координатами и , то прямая, проходящая через них, задаётся уравнением
или
или в общем виде
Если заданы две несовпадающие точки на комплексной плоскости и , то прямая, проходящая через них, задаётся следующим уравнением:
или в одну строку[6]:
Упростим запись этого уравнения[6]:
- (или ,
положив
-
Следовательно, прямая линия полностью определяется выбором комплексного числа . Как точка на комплексной плоскости, так и прямая определяются одним вектором или двумя координатами. Комплексное числе называется вектором прямой, а его компоненты называются координатами прямой[6].
Определим геометрическую природу вектора прямой , определяющего просто точку на комплексной плоскости, рассмотрев два его свойства[7]:
- из того, что в определении
- знаменатель есть чисто мнимое комплексное число, следует, что вектор нормален к вектору , то есть нормален к прямой
- абсолютная величина знаменателя в определении равна удвоенной площади треугольника с основанием , следовательно, абсолютная величина обратно пропорционален длине перпендикуляра, опущенного из начала координат к прямой Другими словами, точка есть инверсия основания этого перпендикуляра.
Векторное параметрическое уравнение прямой
Векторное параметрическое уравнение прямой задается вектором конец которого лежит на прямой, и направляющим вектором прямой Параметр пробегает все действительные значения.
Параметрические уравнения прямой
Параметрические уравнения прямой могут быть записаны в виде:
где — произвольный параметр, — координаты и направляющего вектора прямой. При этом
Смысл параметра аналогичен параметру в векторно-параметрическом уравнении.
Каноническое уравнение прямой
Каноническое уравнение получается из параметрическиx уравнений делением одного уравнения на другое:
|
|