Меню

Главная
Случайная статья
Настройки
Разложение Холецкого
Материал из https://ru.wikipedia.org

Разложение Холецкого (метод квадратного корня) — представление симметричной положительно определённой матрицы в виде , где — нижняя треугольная матрица со строго положительными элементами на диагонали. Иногда разложение записывается в эквивалентной форме: , где — верхняя треугольная матрица. Разложение Холецкого всегда существует и единственно для любой симметричной положительно определённой матрицы.

Существует также обобщение этого разложения на случай комплекснозначных матриц. Если — положительно определённая эрмитова матрица, то существует разложение , где — нижняя треугольная матрица с положительными действительными элементами на диагонали, а эрмитово-сопряжённая к ней матрица.

Разложение названо в честь французского математика польского происхождения Андре-Луи Шолески[англ.] (1875—1918).

Содержание

Алгоритм

Элементы матрицы можно вычислить, начиная с верхнего левого угла матрицы, по формулам
Выражение под корнем всегда положительно, если — действительная положительно определённая матрица.


Вычисление происходит сверху вниз, слева направо, т. е. сперва , а затем .

Для комплекснозначных эрмитовых матриц используются формулы


Приложения

Это разложение может применяться для решения системы линейных уравнений , если матрица симметрична и положительно определена. Такие матрицы часто возникают, например, при использовании метода наименьших квадратов и численном решении дифференциальных уравнений.

Выполнив разложение , решение можно получить последовательным решением двух треугольных систем уравнений: и . Такой способ решения иногда называется методом квадратных корней.[1] По сравнению с более общими методами, такими как метод Гаусса или LU-разложение, он устойчивее численно и требует примерно вдвое меньше арифметических операций.[2]

Разложение Холецкого также применяется в методах Монте-Карло для генерации коррелированных случайных величин. Пусть  — вектор из независимых стандартных нормальных случайных величин, а  — желаемая ковариационная матрица. Тогда вектор будет иметь многомерное нормальное распределение с нулевым математическим ожиданием и ковариационной матрицей .[3]

Реализация в математических пакетах программ
  • В SAS используется функция ROOT(matrix), входящая в пакет SAS IML.
  • В системах MATLAB, Octave, R разложение выполняется командой U = chol(A).
  • В Maple и NumPy существует процедура cholesky в модуле linalg.
  • В Mathematica используется процедура CholeskyDecomposition[A].
  • В MathCAD для разложения используется функция cholesky(A)
  • В GSL используется функция gsl_linalg_cholesky_decomp.
  • В библиотеке от Google ceres-solver[4].
  • В библиотеке Apache Commons Math (начиная с версии 2.0) используется класс CholeskyDecomposition[5].
  • В библиотеке Torch присутствует функция torch.potrf[6].
  • В библиотеке JAMA языка программирования java.
  • В библиотеке Intel Data Analytics Acceleration Library присутствует алгоритмcholesky::Batch.


Примечания
  1. Вержбицкий В. М. Основы численных методов. — М.: Высшая школа, 2009. — 840 с. — ISBN 9785060061239.
  2. Martin Haugh. Generating Correlated Random Variables Архивировано 5 января 2012 года..
  3. Ceres Solver — A Large Scale Non-linear Optimization Library. Дата обращения: 7 сентября 2017. Архивировано из оригинала 2 сентября 2017 года.
  4. CholeskyDecomposition Архивная копия от 7 ноября 2017 на Wayback Machine.
  5. torch.potrf Архивная копия от 20 августа 2017 на Wayback Machine.
Downgrade Counter