Меню

Главная
Случайная статья
Настройки
Рациональная поверхность
Материал из https://ru.wikipedia.org

Рациональная поверхность — это поверхность, бирационально эквивалентная проективной плоскости, или, другими словами, рациональное многообразие[англ.] размерности два. Рациональные поверхности являются простейшими из примерно 10 классов поверхностей классификации Энрикеса — Кодаиры комплексных поверхностей, и это были первые исследованные поверхности.

Содержание

Структура

Любую неособую рациональную поверхность можно получить путём неоднократного раздутия[англ.] минимальной рациональной поверхности. Минимальными рациональными поверхностями являются проективная плоскость и поверхности Хирцебруха[англ.] r для r = 0 или r 2.

Инварианты: Все плюрироды[англ.] равны 0 и фундаментальная группа тривиальна.

Ромб Ходжа:
                 1
           0          0
      1        1+n        1,
           0          0
                 1


где n равен 0 для проективной плоскости, 1 для поверхностей Хирцебруха[англ.] и больше 1 для других рациональных поверхностей.

Группа Пикара[англ.] является нечётной унимодулярной решёткой I1,n, за исключением поверхностей Хирцебруха[англ.] 2m, для которых это чётная унимодулярная решётка II1,1.

Теорема Кастельнуово

Гвидо Кастельнуово доказал, что любая комплексная поверхность, для которой q и P2 (иррегулярность и второй плюрирод) равны нулю, является рациональной. Это используется в классификации Энрикеса — Кодаиры для распознавания рациональных поверхностей. Зарисский[1] доказал, что теорема Кастельнуово верна также для полей положительной характеристики.

Из теоремы Кастельнуово следует также, что любая унирациональная[англ.] комплексная поверхность рациональна. Большинство унирациональных комплексных многообразий размерности 3 и выше не являются рациональными. Для характеристики p > 0 Зарисский[1] нашёл пример унирациональных поверхностей (поверхности Зарисского[англ.]), не являющихся рациональными.

Одно время было неясно, являются комплексные поверхности с нулевыми q и P1 рациональными или нет, но Федериго Энрикес нашёл контрпример (поверхность Энрикеса[англ.]).

Примеры рациональных поверхностей

См. также

Примечания
  1. 1 2 Zariski, 1958.


Литература
Downgrade Counter