Меню
Главная
Случайная статья
Настройки
|
Рациональная поверхность — это поверхность, бирационально эквивалентная проективной плоскости, или, другими словами, рациональное многообразие[англ.] размерности два. Рациональные поверхности являются простейшими из примерно 10 классов поверхностей классификации Энрикеса — Кодаиры комплексных поверхностей, и это были первые исследованные поверхности.
Содержание
Структура
Любую неособую рациональную поверхность можно получить путём неоднократного раздутия[англ.] минимальной рациональной поверхности. Минимальными рациональными поверхностями являются проективная плоскость и поверхности Хирцебруха[англ.] r для r = 0 или r 2.
Инварианты: Все плюрироды[англ.] равны 0 и фундаментальная группа тривиальна.
Ромб Ходжа:
1
0 0
1 1+n 1,
0 0
1
где n равен 0 для проективной плоскости, 1 для поверхностей Хирцебруха[англ.]
и больше 1 для других рациональных поверхностей.
Группа Пикара[англ.] является нечётной унимодулярной решёткой I1,n, за исключением поверхностей Хирцебруха[англ.] 2m, для которых это чётная унимодулярная решётка II1,1.
Теорема Кастельнуово
Гвидо Кастельнуово доказал, что любая комплексная поверхность, для которой q и P2 (иррегулярность и второй плюрирод) равны нулю, является рациональной. Это используется в классификации Энрикеса — Кодаиры для распознавания рациональных поверхностей. Зарисский[1] доказал, что теорема Кастельнуово верна также для полей положительной характеристики.
Из теоремы Кастельнуово следует также, что любая унирациональная[англ.] комплексная поверхность рациональна. Большинство унирациональных комплексных многообразий размерности 3 и выше не являются рациональными.
Для характеристики p > 0 Зарисский[1] нашёл пример унирациональных поверхностей (поверхности Зарисского[англ.]), не являющихся рациональными.
Одно время было неясно, являются комплексные поверхности с нулевыми q и P1 рациональными или нет, но Федериго Энрикес нашёл контрпример (поверхность Энрикеса[англ.]).
Примеры рациональных поверхностей
См. также
Примечания
- 1 2 Zariski, 1958.
Литература
|
|