Меню

Главная
Случайная статья
Настройки
Секционная кривизна
Материал из https://ru.wikipedia.org

Секционная кривизна — один из способов описания кривизны римановых многообразий.

Определение

Секционная кривизна — это функция , которая зависит от секционного направления в точке (то есть двумерной плоскости в касательном пространстве в ). Она равна гауссовой кривизне поверхности, образованной экспоненциальным отображением, измеренной в точке .

Свойства
  • Если — два линейно независимых вектора в , то
    где
а обозначает преобразование кривизны.
  • Эту формулу можно переписать следующим образом
  • Следующая формула показывает, что секционная кривизна описывает тензор кривизны полностью:
    • в следующей более простой форме, используя частные производные:
  • Теорема сравнения Топоногова приводит условие на углы треугольника в римановом многообразии эквивалентное ограниченности его секционной кривизны некоторой постоянной.


Литература
  • Бураго Ю. Д., Залгаллер В. А. Введение в риманову геометрию. — Санкт-Петербург: Наука, 1994. — ISBN 5-02-024606-9.
Downgrade Counter