Меню
Главная
Случайная статья
Настройки
|
Остаточно конечная или финитно аппроксимируемая группа — группа такая, что для любого элемента найдётся гомоморфизм в конечную группу , удовлетворяющий условию .
Примеры
Свойства- Теорема Мальцева.[2] Всякая конечно порождённая подгруппа общей линейной группы является остаточно конечной.
- Подгруппа остаточно конечной группы является остаточно конечной.
- Прямое произведение остаточно конечных групп является остаточно конечным.
- Обратный предел остаточно конечных групп является остаточно конечным.
- Любая конечно порожденная остаточно конечная группа является хопфовой, то есть не имеет собственных факторгрупп, изоморфных ей самой.
Литература
- Stephen Meskin, Nonresidually Finite One-Relator Groups.
- A. I. Mal'cev, "On the faithful representation of infinite groups by matrices" Transl. Amer. Math. Soc. (2) , 45 (1965) pp. 1–18
|
|