Меню

Главная
Случайная статья
Настройки
Тор (поверхность)
Материал из https://ru.wikipedia.org

Тор (тороид) — поверхность вращения, получаемая вращением образующей окружности вокруг оси, лежащей в плоскости этой окружности и не пересекающей её[1].

Обобщённо, тор — топологическое пространство или гладкое многообразие, эквивалентное такой поверхности.

Иногда не требуют, чтобы ось вращения не пересекала образующую окружность. В таком случае, если ось вращения пересекает образующую окружность (или касается её), то тор называют закрытым, иначе открытым[2].

Понятие тора определяется и в многомерном случае. Тор является примером коммутативной алгебраической группы и примером группы Ли.

Содержание

История

Тороидальная поверхность впервые была рассмотрена древнегреческим математиком Архитом при решении задачи об удвоении куба. Другой древнегреческий математик, Персей, написал книгу о спирических линиях — сечениях тора плоскостью, параллельной его оси.

Ось тора

Ось вращения может пересекать окружность, касаться её и располагаться вне окружности. В первых двух случаях тор называется закрытым, в последнем — открытым, или кольцом[2].

Окружность, состоящая из центров образующих окружностей, называется направляющей окружностью.

Топологические свойства

Тор является поверхностью рода 1 (сфера с одной ручкой). Тор является компактным топологическим пространством.

Тор имеет характеристику Эйлера — Пуанкаре =0.

Уравнения

Параметрическое

Уравнение тора с расстоянием от центра образующей окружности до оси вращения R и с радиусом образующей окружности r может быть задано параметрически в виде:


Алгебраическое

Непараметрическое уравнение в тех же координатах и с теми же радиусами имеет четвёртую степень:


Такая поверхность имеет четвёртый порядок.

Существуют другие поверхности, диффеоморфные тору, имеющие другой порядок.
, где x, y комплексные числа. Комплексная эллиптическая кривая, кубическая поверхность.
Вложение тора в 4-мерное пространство. Это поверхность 2 порядка. Кривизна этой поверхности равна 0.


Кривизна поверхности

Тор в трёхмерном пространстве имеет точки положительной и отрицательной кривизны. В соответствии с теоремой Гаусса-Бонне интеграл кривизны по всей поверхности тора равен нулю.

Групповая структура
Downgrade Counter