Меню
Главная
Случайная статья
Настройки
|
Тор (тороид) — поверхность вращения, получаемая вращением образующей окружности вокруг оси, лежащей в плоскости этой окружности и не пересекающей её[1].
Обобщённо, тор — топологическое пространство или гладкое многообразие, эквивалентное такой поверхности.
Иногда не требуют, чтобы ось вращения не пересекала образующую окружность. В таком случае, если ось вращения пересекает образующую окружность (или касается её), то тор называют закрытым, иначе открытым[2].
Понятие тора определяется и в многомерном случае. Тор является примером коммутативной алгебраической группы и примером группы Ли.
Содержание
История
Тороидальная поверхность впервые была рассмотрена древнегреческим математиком Архитом при решении задачи об удвоении куба. Другой древнегреческий математик, Персей, написал книгу о спирических линиях — сечениях тора плоскостью, параллельной его оси.
Ось тора
Ось вращения может пересекать окружность, касаться её и располагаться вне окружности. В первых двух случаях тор называется закрытым, в последнем — открытым, или кольцом[2].
- Изменение расстояния до оси вращения
-
-
-
-
-
-
Окружность, состоящая из центров образующих окружностей, называется направляющей окружностью.
Топологические свойства
Тор является поверхностью рода 1 (сфера с одной ручкой). Тор является компактным топологическим пространством.
Тор имеет характеристику Эйлера — Пуанкаре =0.
Уравнения
Параметрическое
Уравнение тора с расстоянием от центра образующей окружности до оси вращения R и с радиусом образующей окружности r может быть задано параметрически в виде:
Алгебраическое
Непараметрическое уравнение в тех же координатах и с теми же радиусами имеет четвёртую степень:
Такая поверхность имеет четвёртый порядок.
Существуют другие поверхности, диффеоморфные тору, имеющие другой порядок.
- , где x, y комплексные числа. Комплексная эллиптическая кривая, кубическая поверхность.
- Вложение тора в 4-мерное пространство. Это поверхность 2 порядка. Кривизна этой поверхности равна 0.
Кривизна поверхности
Тор в трёхмерном пространстве имеет точки положительной и отрицательной кривизны. В соответствии с теоремой Гаусса-Бонне интеграл кривизны по всей поверхности тора равен нулю.
Групповая структура
|
|