Меню

Главная
Случайная статья
Настройки
Уравнение Беллмана
Материал из https://ru.wikipedia.org

Уравнение Беллмана (также уравнение динамического программирования) — достаточное условие оптимальности в методах оптимизации динамического программирования, названное в честь Ричарда Эрнста Беллмана и основывающееся на принципе оптимальности Беллмана.

Содержание

Описание

Уравнение Беллмана представляет собой дифференциальное уравнение в частных производных с начальными условиями, заданными для последнего момента времени (то есть справа), для функции Беллмана, которая выражает минимальное значение критерия оптимизации, которое может быть достигнуто, при условии эволюции системы из текущего состояния в некоторое конечное. А это в свою очередь позволяет перейти от решения исходной многошаговой задачи оптимизации к последовательному решению нескольких одношаговых задач оптимизации.

Понятие уравнения Беллмана и функции Беллмана обычно применяется для непрерывных систем. Для дискретных систем аналогом выступает рекуррентное соотношение Беллмана. Принцип оптимальности (см. ниже) позволяет в этом случае оптимальное планирование от конца к началу[1].

Формальные соотношения, выражающие достаточное условия оптимальности как для дискретных, так и для непрерывных систем могут быть записаны как для случая детерминированных, так и для случая стохастических динамических систем общего вида. Отличие заключается лишь в том, что для случая стохастических систем в правых частях этих выражений возникает условное математическое ожидание.

В контексте решения задачи оптимального управления можно выделить два подхода: численный и аналитический. Численный подход основан на использовании вычислительных процедур динамического программирования, в то время как аналитический подход связан с решением уравнения Беллмана. То есть, нелинейного уравнения в частных производных, которое имеет аналитическое решение лишь в простейших случаях[2].

Принцип оптимальности

Принцип оптимальности, подходящий как для непрерывных, так и дискретных систем является основополагающим в теории управления. Две формулировки[1]:

Если управление оптимально, то, каковы бы ни были первоначальное состояние системы и управление системой в начальный момент времени, последующее управление оптимально относительно состояния, которое система примет в результате начального управления.

Указанное свойство можно сравнить с соответствующим свойством марковского процесса[1].
Downgrade Counter