Ìåíþ
Ãëàâíàÿ
Ñëó÷àéíàÿ ñòàòüÿ
Íàñòðîéêè
Ó÷àñòíèê:DataDrafter
Ìàòåðèàë èç
https://ru.wikipedia.org
B
0
=
0
I
R
(
R
2
a
2
R
+
arcsin
a
R
)
.
{\displaystyle {\overline {B_{0}}}={\frac {\mu _{0}I}{\pi R}}({\frac {\sqrt {R^{2}-a^{2}}}{R}}+\arcsin {\frac {a}{R}}).}
B
=
4
I
N
1
2
c
(
2
d
1
2
+
L
2
d
)
(
1
+
2
)
)
.
{\displaystyle B={\frac {4\pi IN\mu _{1}\mu _{2}}{c(2d\mu _{1}\mu _{2}+{\frac {L}{2}}-d)(\mu _{1}+\mu _{2}))}}.}
k
1
,
k
2
{\displaystyle k_{1},k_{2}}
s
g
n
(
k
1
)
=
1
,
s
g
n
(
k
2
)
=
1
,
|
k
1
|
<
|
k
2
|
{\displaystyle sgn(k_{1})=1,sgn(k_{2})=-1,|k_{1}|<|k_{2}|}
ê ïðèìåðó k1=1, k2=-20.
k
1
{\displaystyle k_{1}}
k
2
{\displaystyle k_{2}}
H
=
i
=
1
n
(
1
+
H
i
)
1
{\displaystyle H=\prod _{i=1}^{n}(1+H_{i})-1}
H
=
i
=
1
n
(
1
+
H
i
)
1
{\displaystyle H=\prod _{i=1}^{n}(1+H_{i})-1}
H
i
{\displaystyle H_{i}}
H
0
=
(
1.065
)
n
1
{\displaystyle H_{0}=(1.065)^{n}-1}
E
x
p
e
c
t
e
d
=
P
o
s
i
t
i
v
e
/
(
H
+
1
)
{\displaystyle Expected=Positive/(H+1)}
E
x
p
e
c
t
e
d
=
(
1
,
04121
n
)
x
k
1
+
(
n
0.0001
)
(
0.9389
n
)
x
k
2
{\displaystyle Expected=(1,04121^{n})\cdot x\cdot k_{1}+(n\cdot 0.0001)\cdot (0.9389^{n})\cdot x\cdot k_{2}}
P
o
s
i
t
i
v
e
=
(
0.9999
n
)
(
(
1.109
n
)
x
)
k
1
+
(
1
0.9999
n
)
k
2
x
{\displaystyle Positive=(0.9999^{n})\cdot ((1.109^{n})\cdot x)\cdot k_{1}+(1-0.9999^{n})\cdot k_{2}\cdot x}
P
o
s
i
t
i
v
e
=
(
0.99999
n
)
(
(
1.126
n
)
x
)
k
1
+
(
n
0.00001
)
k
2
x
{\displaystyle Positive=(0.99999^{n})\cdot ((1.126^{n})\cdot x)\cdot k_{1}+(n\cdot 0.00001)\cdot k_{2}\cdot x}
E
x
p
e
c
t
e
d
=
(
1.0572
n
)
x
k
1
+
(
1
0.99999
n
)
(
0.9389
n
)
x
k
2
;
{\displaystyle Expected=(1.0572^{n})\cdot x\cdot k_{1}+(1-0.99999^{n})\cdot (0.9389^{n})\cdot x\cdot k_{2};}
P
o
s
i
t
i
v
e
=
(
0.9
n
)
(
(
1.23
n
)
x
)
k
1
+
(
1
0.9
n
)
k
2
x
{\displaystyle Positive=(0.9^{n})\cdot ((1.23^{n})\cdot x)\cdot k_{1}+(1-0.9^{n})\cdot k_{2}\cdot x}
E
x
p
e
c
t
e
d
=
P
o
s
i
t
i
v
e
(
0.9389
n
)
{\displaystyle Expected=Positive\cdot (0.9389^{n})}
E
x
p
e
c
t
e
d
=
(
0.9
n
)
(
(
1.23
n
)
x
)
k
1
+
(
1
0.9
n
)
k
2
(
0.9389
n
)
{\displaystyle Expected=(0.9^{n})\cdot ((1.23^{n})\cdot x)\cdot k_{1}+(1-0.9^{n})\cdot k_{2}\cdot (0.9389^{n})}
{\displaystyle }
E
b
=
(
1
,
04121
n
)
x
k
1
+
(
n
0.0001
)
(
0.9389
n
)
x
k
2
{\displaystyle E_{b}=(1,04121^{n})\cdot x\cdot k_{1}+(n\cdot 0.0001)\cdot (0.9389^{n})\cdot x\cdot k_{2}}
E
n
=
(
1.0572
n
)
x
k
1
+
(
1
0.99999
n
)
(
0.9389
n
)
x
k
2
;
{\displaystyle E_{n}=(1.0572^{n})\cdot x\cdot k_{1}+(1-0.99999^{n})\cdot (0.9389^{n})\cdot x\cdot k_{2};}
E
m
=
(
0.9
n
)
(
(
1.23
n
)
x
)
k
1
+
(
1
0.9
n
)
k
2
(
0.9389
n
)
{\displaystyle E_{m}=(0.9^{n})\cdot ((1.23^{n})\cdot x)\cdot k_{1}+(1-0.9^{n})\cdot k_{2}\cdot (0.9389^{n})}
{\displaystyle }
{\displaystyle }
{\displaystyle }
{\displaystyle }
{\displaystyle }
{\displaystyle }
{\displaystyle }
{\displaystyle }
{\displaystyle }
{\displaystyle }
{\displaystyle }
{\displaystyle }
{\displaystyle }
{\displaystyle }