Меню
Главная
Случайная статья
Настройки
|
Флуоресценция, или флюоресценция — люминесцентный процесс, характеризующийся крайне малым временем затухания излучения после отключения источника возбуждения. Флуоресценцией обычно называют излучательный переход возбуждённого состояния с самого нижнего синглетного колебательного уровня S1 в основное состояние S0[1]. В общем случае флуоресценцией называют разрешённый по спину излучательный переход между двумя состояниями одинаковой мультиплетности: между синглетными уровнями . Типичное время жизни такого возбуждённого состояния составляет 1011106 с[2].
Флуоресценцию следует отличать от фосфоресценции — запрещённого по спину излучательного перехода между двумя состояниями разной мультиплетности. Например, излучательный переход возбуждённого триплетного состояния T1 в основное состояние S0. Синглет-триплетные переходы имеют квантовомеханический запрет, поэтому время жизни возбуждённого состояния при фосфоресценции составляет порядка 103102 с[3].
Содержание
Происхождение термина
Термин «флуоресценция» происходит от названия минерала флюорит, у которого она впервые была обнаружена, и лат. -escent — суффикс, означающий слабое действие.
История изучения
Впервые флуоресценцию соединений хинина наблюдал физик Джордж Стокс в 1852 году.
Теоретические основы
Согласно представлениям квантовой химии, электроны в атомах расположены на энергетических уровнях. Расстояние между энергетическими уровнями в молекуле зависит от её строения. При облучении вещества светом возможен переход электронов между различными энергетическими уровнями. Разница энергии между энергетическими уровнями и частота колебаний поглощённого света соотносятся между собой уравнением (II постулат Бора):
После поглощения света часть полученной системой энергии расходуется в результате релаксации. Часть же может быть испущена в виде фотона определённой энергии[4].
Соотношение спектров поглощения и флуоресценции
Спектр флуоресценции сдвинут относительно спектра поглощения в сторону длинных волн. Это явление получило название «Стоксов сдвиг». Его причиной являются безызлучательные релаксационные процессы. В результате часть энергии поглощённого фотона теряется, а испускаемый фотон имеет меньшую энергию, и, соответственно, большую длину волны[5][6].
Схематическое изображение процессов испускания и поглощения света. Диаграмма Яблонского
Схематически процессы поглощения света и флуоресценции показывают на диаграмме Яблонского.
При нормальных условиях большинство молекул находятся в основном электронном состоянии . При поглощении света молекула переходит в возбуждённое состояние . При возбуждении на высшие электронные и колебательные уровни избыток энергии быстро расходуется, переводя флуорофор на самый нижний колебательный подуровень состояния . Однако, существуют и исключения: например, флуоресценция азулена может происходить как из , так и из состояния.
Квантовый выход флуоресценции
Квантовый выход флуоресценции показывает, с какой эффективностью проходит данный процесс. Он определяется как отношение количества испускаемых и поглощаемых фотонов. Квантовый выход флуоресценции может быть рассчитан по формуле
где — количество испускаемых в результате флуоресценции фотонов, а — общее количество поглощаемых фотонов. Чем больше квантовый выход флуорофора, тем интенсивнее его флуоресценция.
Квантовый выход можно также определить с помощью упрощённой диаграммы Яблонского[7], где и — константы скорости излучательной и безызлучательной дезактивации возбуждённого состояния.
Тогда доля флуорофоров, возвращающихся в основное состояние с испусканием фотона, и, следовательно, квантовый выход:
Из последней формулы следует, что если , то есть если скорость безызлучательного перехода значительно меньше скорости излучательного перехода. Отметим, что квантовый выход всегда меньше единицы из-за стоксовых потерь.
Флуоресцентные соединения
К флуоресценции способны многие органические вещества, как правило содержащие систему сопряжённых -связей. Наиболее известными являются хинин, метиловый зелёный, метиловый синий, феноловый красный, кристаллический фиолетовый, бриллиантовый крезиловый синий, POPOP[англ.], флуоресцеин, эозин, акридиновые красители (акридиновый оранжевый, акридиновый жёлтый), родамины (родамин 6G, родамин B), нильский красный и многие другие.
Применение
В производстве красок и окраске текстиля
|
|