Меню
Главная
Случайная статья
Настройки
|
Линза Френеля представляет собой оптическую деталь со сложной ступенчатой поверхностью. Она может заменить как сферическую, так и цилиндрическую линзы, а также другие оптические детали, например, призмы, при этом ступени такой линзы могут быть разграничены концентрическими, спиральными или линейными канавками[1]. Является частным случаем ступенчатых преломляющих (или отражающих) френелевых поверхностей.[2]
Содержание
История
Идея создания более тонкой, более лёгкой линзы в виде серии кольцевых ступеней часто приписывалась Жоржу-Луи Леклерку де Бюффону[3]. В то время как де Буффон предлагал шлифовать такую линзу из одного куска стекла, маркиз де Кондорсе (1743-1794 гг.) предложил изготавливать её с отдельными секциями, установленными в раме[4]. Французскому физику и инженеру Огюстену Жану Френелю чаще всего приписывали разработку многокомпонентной линзы для использования в маяках. Согласно журналу Smithsonian, первая линза Френеля была использована в 1823 году в Кордуанском маяке в устье лимана Жиронды; его свет можно было увидеть с расстояния более 32 км (20 миль)[5]. Шотландскому физику сэру Дейвиду Брюстеру приписывали убеждение руководства Британии использовать эти линзы в своих маяках[6][7].
Строение
Линза Френеля, заменяющая сферическую линзу, состоит из концентрических колец, каждое из которых представляет собой участок конической поверхности с криволинейным профилем и является элементом поверхности сплошной линзы[8]. Предложена Огюстеном Френелем для морских маяков.
Благодаря такой конструкции линза Френеля имеет малую толщину и вес даже при большой угловой апертуре. Сечения колец у линзы построены таким образом, чтобы снижалась её сферическая аберрация, и лучи точечного источника, помещённого в фокусе линзы, после преломления в кольцах выходят практически параллельным пучком (в кольцевых линзах Френеля)[9].
Линзы Френеля бывают кольцевыми и поясными. Кольцевые концентрируют световой поток в одном направлении, поясные — по всем направлениям в определённой плоскости[8].
Диаметр линзы Френеля может составлять от долей сантиметра до нескольких метров. Крупные линзы, например, маячные, изготавливают сборными из множества отдельных оптических элементов на общем металлическом каркасе.
Применение
Основным недостатком линзы Френеля по сравнению с обычными линзами и традиционными объективами является высокий уровень паразитной засветки и разного рода «ложные изображения» из-за наличия переходных краевых участков между зонами, поэтому её использование для построения оптически точных изображений затруднено. Тем не менее уже есть положительный опыт построения и таких оптических систем. Перспективным направлением может быть построение космических телескопов диаметра в десятки и сотни метров с использованием линз Френеля на основе тонких мембран[10].
Линзы Френеля применяют:
В зеркальных фотоаппаратах линзу Френеля используют вместо плоско-выпуклой коллективной линзы, которая строит изображение выходного зрачка объектива в плоскости окуляра видоискателя[13]. Таким образом достигается равномерная яркость изображения в пределах всего кадра и удобство визирования. Кольцевую структуру линзы маскируют матированием плоской поверхности, предназначенной для фокусировки объектива, а паразитное рассеивание не оказывает влияния на изображение.
Выпускают тонкие плоские лупы с размером до книжного листа, представляющие собой лист прозрачного пластика, на котором оттиснута линза Френеля. Линза Френеля в виде пластиковой плёнки, наклеенной на заднее стекло автомобиля, уменьшает мёртвую (невидимую) зону позади автомобиля при взгляде через зеркало заднего вида. Перспективным считается использование линз Френеля в качестве концентратора солнечной энергии для солнечных батарей, позволившее довести КПД солнечных элементов до 44,7 %[14].
-
Плоский, тонкий, прозрачный и гибкий пластиковый лист ( лентикулярный линзовый растр), имеющий концентрические круги на нём, действует как линза Френеля
-
Френелевская лупа размером с кредитную карту
-
Макрофотография поверхности линзы Френеля
-
Линза Френеля для увеличения изображения на экране телевизора; у данной линзы практически отсутствует дисторсия
-
Вид на освещенный край кромки оптической системы посадки линзы Френеля на борту атомного авианосца « Дуайт Эйзенхауэр»
-
Принципиальная схема рассеивания света в фаре, где одна часть света отражается от параболического зеркала и преломляется через линзу Френеля
-
-
-
Фасетный фокусирующий элемент охранного извещателя для инфракрасного излучения с линзами Френеля
Примечания
- Теория оптических систем, 1992, с. 84.
- Русинов М.М. (ред.) Вычислительная оптика: Справочник —Л.: Машиностроение, 1984. с. 141
- Fresnel lens (англ.) // Encyclopdia Britannica : book. — Encyclopdia Britannica Online. Encyclopdia Britannica Inc, 2012. Архивировано 13 мая 2020 года.
- Fresnel lens (неопр.) // Appleton's dictionary of machines, mechanics, engine-work, and engineering. — New York: D. Appleton and Co, 1874. — Т. 2. — С. 609.
- Watson, Bruce. «Science Makes a Better Lighthouse Lens.» Smithsonian. August 1999 v30 i5 p30. produced in Biography Resource Center. Farmington Hills, Mich.: Thomson Gale. 2005.
- «Brewster, Sir David.» Архивная копия от 11 мая 2020 на Wayback Machine Encyclopdia Britannica. 2005. Encyclopdia Britannica Online. 11 November 2005.
- «David Brewster.» World of Invention, 2nd ed. Gale Group, 1999.
- 1 2 Френеля линза // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1998. — Т. 5. — С. 374—375. — 760 с. — ISBN 5-85270-101-7.
- Т. В. Стаценко, Ю. А. Толмачев, И. А. Шевкунов //Пространственно-временное преобразование ультракороткого импульса линзой Френеля Архивная копия от 29 декабря 2014 на Wayback Machine. — Статья. — НИЧ ИТМО. — УДК 535.4
- Линзы Френеля в телескопах (неопр.). Дата обращения: 18 апреля 2008. Архивировано 27 мая 2010 года.
-
- В.М.Андреев. фотоэлектрическое преобразование солнечной энергии // Соросовский образовательный журнал, №7 : журнал. — 1996. — № №7. — С. 3. Архивировано 27 августа 2018 года.
- Фотоаппараты, 1984, с. 16.
- Une cellule solaire conue avec Soitec tablit un record mondial d’efficacit (неопр.). Дата обращения: 30 марта 2014. Архивировано 9 января 2014 года.
Литература
|
|