Меню
Главная
Случайная статья
Настройки
|
Число Нараяны — число, выражаемое через биномиальные коэффициенты ():
- ;
такие числа формируют треугольник Нараяны — нижнюю треугольную матрицу натуральных чисел, возникающую в ряде задач перечислительной комбинаторики.
Открыты канадским математиком индийского происхождения Тадепалли Нараяной (1930—1987) при решении следующей задачи: найти число коров и тёлок, появившихся от одной коровы за 20 лет, при условии, что корова в начале каждого года приносит тёлку, а тёлка дает такое же потомство в начале года, достигнув возраста трёх лет.
Первые восемь рядов чисел Нараяны[1]:
k = 1 2 3 4 5 6 7 8
Приложения и свойства
Пример задачи подсчёта, решение которой может быть задано в терминах чисел Нараяны , — это число выражений, содержащих пар круглых скобок, которые правильно сопоставлены и которые содержат различных вложений. Например, как четыре пары скобок образуют шесть различных последовательностей, которые содержат два вложения(под вложениями подразумевается шаблон () ):
()((())) (())(()) (()(())) ((()())) ((())()) ((()))()
Пример демонстрирует, что , так как единственный способ получить только один шаблон () — открывающих скобок, а затем закрывающих. Также , поскольку единственным вариантом является последовательность ()()() … () . В более общем случае можно показать, что треугольник Нараяны обладает следующим свойством симметрии:
- .
Сумма строк треугольника Нараяны равняется соответствующим числам Каталана:
- ,
таким образом, числа Нараяны также подсчитывают количество путей на двумерной целочисленной решётке от до при движении только по северо-восточной и юго-восточной диагоналям, не отклоняясь ниже оси абсцисс, с локальными максимумами. Фигуры получающиеся при :
|
Пути
|
путь с одним максимумом:
|
|
путей с двумя максимумами:
|
|
путей с тремя максимумами:
|
|
путь с четырьмя максимумами:
|
|
Сумма равна 1 + 6 + 6 + 1 = 14, что равно числу Каталана .
Производящая функция чисел Нараяны[2]:
- .
Примечания
- последовательность A001263 в OEIS
- Petersen, 2015, p. 25.
Литература
|
|