Меню

Главная
Случайная статья
Настройки
Элементарный электрический заряд
Материал из https://ru.wikipedia.org

Элементарный электрический заряд — фундаментальная физическая постоянная, минимальная порция (квант) электрического заряда, наблюдающегося в природе у свободных долгоживущих частиц. Согласно изменениям определений основных единиц СИ, равен точно 1,602 176 6341019 Кл[1] в Международной системе единиц (СИ)[2]. Тесно связан с постоянной тонкой структуры, описывающей электромагнитное взаимодействие[3].

Содержание

Квантование электрического заряда

Любой наблюдаемый в эксперименте электрический заряд всегда кратен одному элементарному — такое предположение было высказано Б. Франклином в 1752 году и в дальнейшем неоднократно проверялось экспериментально. Впервые элементарный заряд был экспериментально измерен Милликеном в 1910 году[3].

Тот факт, что электрический заряд встречается в природе лишь в виде целого числа элементарных зарядов, можно назвать квантованием электрического заряда. При этом в классической электродинамике вопрос о причинах квантования заряда не обсуждается, поскольку заряд является внешним параметром, а не динамической переменной. Удовлетворительного объяснения, почему заряд обязан квантоваться, пока не найдено, однако уже получен ряд интересных наблюдений.
  • Если в природе существует магнитный монополь, то, согласно квантовой механике, его магнитный заряд обязан находиться в определённом соотношении с электрическим зарядом любой выбранной элементарной частицы. Отсюда автоматически следует, что существование всего одного магнитного монополя влечёт за собой квантование всех электрических зарядов во Вселенной. Однако обнаружить в природе магнитный монополь не удалось.
  • В современной физике элементарных частиц разрабатываются модели наподобие преонной, в которых все известные фундаментальные частицы оказывались бы простыми комбинациями новых, ещё более фундаментальных частиц. В этом случае квантование заряда наблюдаемых частиц не представляется удивительным, поскольку оно возникает «по построению».
  • Не исключено также, что все параметры наблюдающихся частиц будут описаны в рамках единой теории поля, подходы к которой разрабатываются в настоящее время. В таких теориях величина электрического заряда частиц должна вычисляться из крайне небольшого числа фундаментальных параметров, возможно, связанных со структурой пространства-времени на сверхмалых расстояниях. Если такая теория будет построена, тогда то, что мы наблюдаем как элементарный электрический заряд, окажется некоторым дискретным инвариантом пространства-времени (скажем, топологическим). Такой подход развивается, например, в модели С. Бильсона-Томпсона[4], в которой фермионы Стандартной модели интерпретируются, как три ленты пространства-времени, заплетённые в косу (брэд), а электрический заряд (точнее, треть от него) соответствует перекрученной на 180° ленте. Однако несмотря на изящество таких моделей, конкретных общепринятых результатов в этом направлении пока не получено.


Дробный электрический заряд

С открытием кварков стало понятно, что элементарные частицы могут обладать дробным электрическим зарядом, например, ± и ± элементарного. Однако подобные частицы существуют только в связанных состояниях (конфайнмент), таким образом, почти все известные свободные частицы (и все стабильные и долгоживущие) имеют электрический заряд, кратный элементарному, хотя рассеяние на частицах с дробным зарядом наблюдалось.

Исключением является t-кварк, его время жизни (~5·10 с) настолько мало, что он распадается раньше, чем успевает подвергнуться адронизации, и поэтому встречается только в свободном виде. Заряд t-кварка по прямым измерениям равен +[5].

Неоднократные поиски долгоживущих свободных объектов с дробным электрическим зарядом, проводимые различными методиками в течение длительного времени, не дали результата.

Стоит, однако, отметить, что электрический заряд квазичастиц также может быть не кратен целому. В частности, именно квазичастицы с дробным электрическим зарядом отвечают за дробный квантовый эффект Холла.

Экспериментальное определение элементарного электрического заряда

Число Авогадро и постоянная Фарадея

Если известны число Авогадро A и постоянная Фарадея , величину элементарного электрического заряда можно вычислить, используя формулу


(другими словами, заряд одного моля электронов, делённый на число электронов в моле, равен заряду одного электрона.)

По сравнению с другими, более точными методами, этот метод не даёт высокой точности, но всё-таки точность его достаточно высока. Ниже приводятся подробности этого метода.

Значение постоянной Авогадро

Величина может быть измерена непосредственно с помощью законов электролиза Фарадея. Законы электролиза Фарадея определяют количественные соотношения, основанные на электрохимических исследованиях, опубликованных Майклом Фарадеем в 1834 году[7]. В эксперименте электролиза существует взаимно-однозначное соответствие между количеством электронов проходящих между анодом и катодом, и количеством ионов, осевших на пластине электрода. Измеряя изменения массы анода и катода, а также общий заряд, проходящий через электролит (который может быть измерен как интеграл по времени от электрического тока), а также учитывая молярную массу ионов, можно вывести .

Ограничения на точность метода заключается в измерении . Лучшие экспериментальное значения имеют относительную погрешность 1,6 промилле, что примерно в тридцать раз больше, чем в других современных методах измерения и расчёта элементарного заряда.

Опыт Милликена

Известный опыт по измерению заряда электрона

Дробовой шум

Любой электрический ток сопровождается электронным шумом от различных источников, одним из которых является дробовой шум. Существование дробового шума связано с тем, что ток является не непрерывным, а состоит из дискретных электронов, которые поочерёдно поступают на электрод. Путём тщательного анализа шума тока может быть вычислен заряд электрона. Этот метод, впервые предложенный Вальтером Шоттки, может давать значение

Эффект Джозефсона и константа фон Клитцинга

Другим точным методом измерения элементарного заряда является вычисление его из наблюдения двух эффектов квантовой механики: эффекта Джозефсона, при котором возникают колебания напряжения в определённой сверхпроводящей структуре и квантового эффекта Холла, эффекта квантования холловского сопротивления или проводимости двумерного электронного газа в сильных магнитных полях и при низких температурах. Постоянная Джозефсона


где

Постоянная фон Клитцинга


может быть измерена непосредственно с помощью квантового эффекта Холла.

Из этих двух констант может быть вычислена величина элементарного заряда:


Примечания
  1. Elementary charge (англ.). The NIST Reference on Constants, Units, and Uncertainty. US National Institute of Standards and Technology. Дата обращения: 20 мая 2020. Архивировано 24 апреля 2015 года.
  2. В системе СГСЭ элементарный заряд равен точно 4,803 204 712 570 263 721010 Фр. Значение в единицах СГСЭ приведено как результат пересчёта значения CODATA в кулонах с учётом того факта, что кулон точно равен 2 997 924 580 единицам электрического заряда СГСЭ (франклинам или статкулонам).
  3. 1 2 Томилин К. А. Фундаментальные физические постоянные в историческом и методологическом аспектах. — М.: Физматлит, 2006. — С. 96—105. — 368 с. — 400 экз. — ISBN 5-9221-0728-3.
  4. A topological model of composite preons Архивная копия от 9 ноября 2018 на Wayback Machine es.arXiv.org
  5. Abazov V. M. et al. (D Collaboration). Experimental discrimination between charge 2/3 top quark and charge 4/3 exotic quark production scenarios (англ.) // Physical Review Letters : journal. — 2007. — Vol. 98, no. 4. — P. 041801. — doi:10.1103/PhysRevLett.98.041801. — . — arXiv:hep-ex/0608044. — PMID 17358756.
  6. Loschmidt J. Zur Grsse der Luftmolekle (нем.) // Sitzungsberichte der kaiserlichen Akademie der Wissenschaften Wien. — 1865. — Bd. 52, Nr. 2. — S. 395—413. English translation Архивировано 7 февраля 2006 года..
  7. Ehl R. G., Ihde A. Faraday's Electrochemical Laws and the Determination of Equivalent Weights (англ.) // Journal of Chemical Education[англ.] : journal. — 1954. — Vol. 31, no. May. — P. 226—232. — doi:10.1021/ed031p226. — .
  8. Beenakker C., Schnenberger C. Quantum Shot Noise (англ.) // Physics Today. — 2003. — May (vol. 56, no. 5). — P. 37—42. — doi:10.1063/1.1583532. — arXiv:cond-mat/0605025.
  9. de-Picciotto R. et al. Direct observation of a fractional charge (англ.) // Nature. — 1997. — Vol. 389, no. 162—164. — P. 162. — doi:10.1038/38241. — ..
Downgrade Counter