Меню
Главная
Случайная статья
Настройки
|
SpaceLiner — концепция суборбитального гиперзвукового пассажирского космоплана, разрабатываемая с 2005 года в Германском центре авиации и космонавтики (нем. Deutsches Zentrum fr Luft- und Raumfahrt DLR)[1]
Содержание
Концепция
Космоплан нетрадиционного для пассажирских средств вертикального взлета представляет собой двухступенчатую авиационно-космическую систему, состоящую из беспилотной (автоматической) стартовой ступени-ускорителя и пассажирской суборбитальной ступени, рассчитанной на 50 пассажиров. Всего силовая установка включает в себя одиннадцать жидкостных ракетных двигателей (9 из них установлены на стартовой ступени, 2 — на суборбитальной ступени), работающих на криогенном топливе — жидком кислороде (LOX) и жидком водороде (LH2). После выключения ракетных двигателей суборбитальная ступень способна в планирующем полёте за кратчайшее время покрывать большие межконтинентальные расстояния. В зависимости от маршрута при этом могут достигаться высоты полета до 80 км и скорости, соответствующие числу Маха свыше 20. Продолжительность полета на маршруте Австралия-Европа составит 90 Минут, а на маршруте Европа-Калифорния — не более 60 Минут[2]. Перегрузки, действующие в полете на пассажиров не превосходят 2.5 g и остаются ниже уровня нагрузок, действующих на астронавтов космического челнока Space-Shuttle. Более того, согласно проектной концепции пассажирская кабина выполняется в виде отдельной спасательной капсулы, которая в случае необходимости отделяется от суборбитальной ступени и обеспечивает пассажирам безопасное возвращение на Землю.
По данным Германского центра авиации и космонавтики ввод системы в эксплуатацию возможен между 2040 и 2050 годами. Главным аспектом концепции является полная многоразовость использования системы в сочетании с серийным производством, сравнимым по масштабу с авиационным. Благодаря этим факторам ожидается существенное повышение экономической эффективности системы по сравнению с существующими воздушно-космическими системами. Основной проблемой остаётся повышение безопасности и надёжности ключевых компонентов системы, напр., ракетных двигателей, в такой степени, которая позволит их ежедневное использование для перевозки пассажиров.
В настоящее время разработка концепции SpaceLiner финансируется как собственными средствами Германского центра авиации и космонавтики (нем. Deutsches Zentrum fr Luft- und Raumfahrt — DLR), так и в рамках таких спонсируемых Европейским Союзом проектов, как FAST20XX и CHATT. В проекте SpaceLiner участвуют, наряду с DLR, и другие партнеры из европейского авиационно-космического сектора.
Проект SpaceLiner имеет предысторию в виде проекта конца XX века нереализованной немецкой орбитальной двухступенчатой горизонтально-стартующей многоразовой авиационно-космической системы Зенгер-2, которому предшествовал также неосуществлённый военный проект частично-орбитального авиационно-космического бомбардировщика Silbervogel в нацистской Германии. В случае реализации SpaceLiner станет первым в мире регулярным суборбитальным гиперзвуковым пассажирским авиалайнером.
История
В настоящее время SpaceLiner находится в стадии предварительного проектирования (эскизного проекта). Работа над эскизным проектом продвигается на основе уже выполненных исследований по мере все более детальной разработки и интеграции подсистем. Параллельно с этим изучаются дополнительные варианты, удовлетворяющие новым требованиям и спецификациям, а результаты исследований этих вариантов также могут быть использованы в процессе общей разработки[3].
SpaceLiner 2 — это первый вариант, в котором была предусмотрена интеграция активной системы охлаждения элементов конструкции, подвергаемых особенно высоким тепловым нагрузкам при входе в плотные слои атмосферы[4].
Модификация SpaceLiner 4 — это дальнейшее развития варианта SpaceLiner 2 с улучшенными аэродинамическими характеристиками и характеристиками устойчивости и управляемости. На основе этой конфигурации в рамках финансируемого ЕС исследовательского проекта FAST20XX были более детально — как экспериментально, так и с помощью математического моделирования -исследованы различные технологии, необходимые для космоплана SpaceLiner[5].
SpaceLiner 7 — это актуальная на сегодняшний день конфигурация, которая в настоящее время исследуется в DLR. В процессе математической оптимизации для улучшения аэродинамических, термических и структурно-механических качеств на режиме гиперзвукового полета треугольное крыло с изломом передней кромки было заменено треугольным крылом без излома. К настоящему моменту выполнена предварительная разработка и интеграция таких важнейших подсистем космоплана, как пассажирская кабина, криогенные баки, система подачи топлива и система теплозащиты.
В настоящее время дополнительно рассматривается модификация космоплана SpaceLiner, рассчитанная на 100 пассажиров для использования на коротких дистанциях[6]. Возможные коммерческие маршруты классифицируются в соответствии с покрываемым расстоянием, при этом класс 1 соответствует наибольшей, а класс 3 — наименьшей дальности полёта. Для выполнения перелёта в зависимости от потребной дальности используется удлиненная или укороченная модификация разгонной ступени, которая может комбинироваться как с 50-местной, так и со 100-местной модификацией суборбитальной пассажирской ступени.
Технические характеристики
Характеристика
|
Суборбитальная пассажирская ступень (50 пассажиров)
|
Разгонная ступень (удлинённая модификация)
|
Суммарно (маршрут Австралия — Европа)
|
Длина:
|
65,0 м
|
83,5 м
|
Размах крыла:
|
33,0 м
|
37,5 м
|
Высота:
|
12,0 м
|
8,6 м
|
21,5 м
|
Длина пассажирской кабины:
|
15,3 м
|
—
|
|
Максимальный диаметр фюзеляжа:
|
6,8 м
|
8,6 м
|
|
Сухая масса:
|
145 т
|
170 т
|
315 т
|
Взлётная масса:
|
380 т
|
1460 т
|
1840 т
|
Масса топлива:
|
215 т
|
1285 т
|
1500 т
|
Масса в момент выключения двигателей:
|
160 т
|
180 т
|
|
Макс. высота полёта:
|
около 80 км
|
около 75 км
|
|
Макс. скорость полёта:
|
7 км/с (25 200 км/ч)
|
3,7 км/с (13 300 км/ч)
|
|
Макс. число Маха:
|
24
|
14
|
|
Макс. дальность полёта:
|
около 18 000 км
|
Количество двигателей:
|
2
|
9
|
11
|
Двигатели
В концепции космоплана SpaceLiner применяется единый тип жидкостного ракетного двигателя многоразового использования: двигатель с полностью замкнутым циклом, при котором всё топливо, включая топливо, используемое в приводе турбонасосного агрегата, проходит через камеру сгорания[7]. Степень расширения сопла выбирается в соответствии с различными режимами полёта разгонной ступени и суборбитальной ступени. В качестве компонентов топлива предусмотрено использование высокоэнергетической и экологически чистой комбинации жидкого водорода с жидким кислородом.
Характеристика
|
Суборбитальная пассажирская ступень
|
Разгонная ступень
|
Соотношение компонентов:
|
6,0
|
Давление в камере сгорания:
|
16,0 МПа
|
Секундный расход (на двигатель):
|
518 кг/с
|
Степень расширения сопла::
|
59,0
|
33,0
|
Удельный импульс (вакуум):
|
449 с
|
437 с
|
Удельный импульс (на уровне моря):
|
363 с
|
389 с
|
Тяга двигателя (вакуум):
|
2268 кН
|
2206 кН
|
Тяга двигателя (на уровне моря):
|
1830 кН
|
1961 кН
|
Ссылки
Литература
- (англ.) Sippel M., Klevanski J., Steelant J.: Comparative study on options for high-speed intercontinental passenger transports: air-breathing- vs. rocket-propelled, IAC-05-D2.4.09 (октябрь 2005)
- Sippel M. Promising roadmap alternatives for the SpaceLiner (англ.) (недоступная ссылка — история). Acta Astronautica, Vol. 66, Iss. 11-12 (2010).
- Schwanekamp T., Bauer C., Kopp A. Development of the SpaceLiner Concept and its Latest Progress (англ.) (PDF). 4th CSA-IAA Conference on Advanced Space Technology (2011). Дата обращения: 2 сентября 2013. Архивировано 26 декабря 2013 года.
- van Foreest A. et al. Transpiration Cooling Using Liquid Water (англ.) (PDF) (недоступная ссылка — история). Journal of Thermodynamics and Heat Transfer, Vol. 23, Number 4 (2007).
- van Foreest A. The Progress on the SpaceLiner Design in the Frame of the FAST 20XX Program (англ.) (PDF) (недоступная ссылка — история). 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference (2009).
- Schwanekamp T., Btnley J. , Sippel M. Preliminary Multidisciplinary Design Studies on an Upgraded 100 Passenger SpaceLiner Derivative (англ.) (PDF). 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference (2012). Дата обращения: 2 сентября 2013. Архивировано 26 декабря 2013 года.
- Sippel M. et al. Technical Maturation of the SpaceLiner Concept (англ.) (PDF). 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference (2012). Дата обращения: 2 сентября 2013. Архивировано 9 мая 2021 года.
|
|