Меню

Главная
Случайная статья
Настройки
Топливный элемент
Материал из https://ru.wikipedia.org

Топливный элемент, ТЭ (англ. fuel cell) — электрохимическое устройство, электрохимический источник тока, непосредственно преобразующий химическую энергию топлива в электрическую энергию.

Электродвижущая сила в топливном элементе возникает в результате электрохимических процессов из постоянно поступающих активных веществ[1].

Наиболее совершенными промышленно выпускаемыми источниками тока являются низкотемпературные топливные элементы с рабочей температурой ниже 200 °C. В качестве топлива в них используются водород, жидкие углеводороды и другие виды топлива, в качестве катализатора, обычно, платина[2].

КПД промышленно выпускаемых топливных элементов достигает 60 %[3], как и у наиболее совершенных электростанций с парогазовой установкой. В гибридных установках, где топливные элементы используются совместно с паросиловыми машинами, КПД комплексной установки может достигать 75 %[4].

Топливные элементы имеют высокий уровень экологической безопасности, в них могут использоваться возобновляемые виды топлива[5].

Содержание

Устройство ТЭ

Топливные элементы — это электрохимические устройства, которые теоретически могут иметь высокий коэффициент преобразования химической энергии в электрическую.

Обычно в низкотемпературных топливных элементах используются: водород подаваемый со стороны анода и кислород или воздух подаваемый на катод (водородный элемент) или метанол и кислород воздуха.
Принцип разделения потоков горючего и окислителя


В топливном элементе реагенты втекают, продукты реакции вытекают, и реакция может протекать так долго, как поступают в неё реагенты и сохраняется реакционная способность компонентов самого топливного элемента, чаще всего определяемая «отравлением» их катализатора побочными продуктами недостаточно чистых исходных веществ.

Одноразовые же гальванические элементы и аккумуляторы, в отличие от топливных элементов, содержат расходуемые твёрдые или жидкие реагенты содержание которых ограничена объёмом гальванического элемента, и, после исчерпания реагентов электрохимическая реакция прекращается, они должны быть заменены на новые либо электрически перезаряжены, чтобы произвести обратную электрохимическую реакцию, или, по крайней мере, в них нужно поменять израсходованные электроды и отработанный электролит.

Топливные элементы не предназначены для хранения электрической энергии, как гальванические элементы или электрохимические аккумуляторы, но для некоторых применений, таких как работающие изолированно от электрической системы электростанции, использующие непостоянные источники энергии (солнце, ветер), они совместно с электролизёрами, компрессорами и ёмкостями для хранения топлива (например, баллоны для водорода) образуют устройство для хранения энергии.

Пример водородно-кислородного топливного элемента

Водородно-кислородный топливный элемент с протонообменным электролитом" (например, "с полимерной мембраной) содержит протонопроводящую полимерную мембрану, которая разделяет два электрода — анод и катод; каждый электрод обычно представляет собой угольную пластину (матрицу) с нанесённым катализатором — платиной или сплавом платиноидов и другие композиции.

На катализаторе анода молекулярный водород диссоциируется и теряет электроны превращаясь в протоны. Катионы водорода (протоны) проникают через мембрану к катоду, но электроны отдаются во внешнюю цепь, так как мембрана непроницаема для электронов, то есть не имеет электронной проводимости.

На катализаторе катода атомы кислорода соединяются с электронами (который подводятся по проводу внешней электрической цепи) и проникшими через электролит протонами и образует воду, являющуюся единственным продуктом реакции, вода отводится от катода в виде пара и/или жидкости.

Мембрана

Мембрана обеспечивает проводимость для протонов, но не электронов. Она может быть полимерной (например, материал с фирменным названием «Нафион» (Nafion), полибензимидазол и другие полимеры) или керамической (оксидной и другой). Также существуют ТЭ и без мембраны[6].

Анодные и катодные материалы и катализаторы

Анод и катод, как правило, — это просто проводящий катализатор — платина, нанесённая на высокоразвитую углеродную поверхность.

Аналогии в живой природе

Природным топливным элементом является митохондрия живой клетки. Митохондрии перерабатывают органическое «горючее» — пируваты и жирные кислоты и синтезируют АТФ — универсальный источник энергии для всех биохимических процессов в живых организмах, при этом возникает разность электрических потенциалов на своей внутренней мембране. Однако реализация этого процесса для получения электроэнергии в промышленных масштабах затруднительно, так как протонные помпы митохондрий имеют белковую природу.

История

Первые открытия

В 1839 году была опубликована заметка британского учёного Уильяма Роберта Грове, в которой он описал опыт, где обнаружил «постоянное отклонение» стрелки гальванометра между двумя платиновыми электродами погружёнными в жидкость, омываемыми один — кислородом, другой — водородом[7]. Позже он установил, что процесс электролиза обратим, то есть водород и кислород объединяются в молекулы воды без горения, но с выделением тепла и электричества[8]. Свой прибор, где удалось провести эту реакцию, ученый назвал «газовой батареей», и это был первый топливный элемент.

В 1937 году профессор Ф. Бэкон начал работы над своим топливным элементом. К концу 1950-х он создал батарею из 40 топливных элементов, имеющую мощность 5 кВт. Такую батарею можно было применить для обеспечения энергией сварочного аппарата или грузоподъёмника[9]. Батарея работала при высоких температурах порядка 200 °С и более и давлениях 20—40 бар. Эта батарея была весьма массивна.

История исследований в СССР и России

Русский электротехник П. Н. Яблочков получил патент (N. 187139) на электрический элемент с механической поляризацией (топливный элемент) в 1887 году, проживая в то время во Франции.

В СССР первые публикации о топливных элементах появились в 1941 году. Значительный вклад в их создание внёс советский учёный О. К. Давтян[10].

Первые систематические исследования в СССР начались в 60-х годах. РКК «Энергия» (с 1966 года) разрабатывала фосфорнокислотные (PAFC) топливные элементы для советской лунной программы. С 1987 по 2005 годы «Энергия» произвела около 100 топливных элементов, которые наработали суммарно около 80 тыс. часов.

Во время работ над программой «Буран» (1980-е годы), разрабатывались щелочные (AFC) элементы, отвечающие условиям и требованиям полёта. На «Буране» были установлены 10-киловаттные топливные элементы.

В 70-е — 80-е годы НПО «Квант» совместно с Рижским автобусным заводом «РАФ» разрабатывали щелочные ТЭ для автобусов. Прототип такого автобуса на топливных элементах (Квант-РАФ) был изготовлен в 1982 году.

В 1989 году «Институт высокотемпературной электрохимии» (Екатеринбург) произвёл первую твёрдооксидную SOFC-установку[что?] мощностью 1 кВт.

В 1999 году АвтоВАЗ начал работы с топливными элементами. К 2003 году на базе автомобиля ВАЗ-2131 было создано несколько опытных экземпляров. В моторном отсеке автомобиля располагались батареи топливных элементов, а баки со сжатым водородом располагались в багажном отделении, то есть была применена классическая схема расположения силового агрегата и топливных баков-баллонов. Разработками водородного автомобиля руководил кандидат технических наук Г. К. Мирзоев.

10 ноября 2003 года было подписано Генеральное соглашение о сотрудничестве между Российской академией наук и компанией «Норильский никель» в области водородной энергетики и топливных элементов[11]. Это привело к учреждению[12] 4 мая 2005 года Национальной инновационной компании «Новые энергетические проекты» (НИК НЭП), которая в 2006 году создала резервную энергетическую установку на основе ТЭ с твёрдым полимерным электролитом мощностью 1 кВт. Однако, по сообщению информационного агентства «МФД-ИнфоЦентр», ГМК «Норильский никель» ликвидирует компанию «Новые энергетические проекты» в рамках объявленного в начале 2009 года решения избавляться от непрофильных и убыточных активов[13].

В 2008 году была основана компания «ИнЭнерджи», которая занимается научно-исследовательскими и опытно-конструкторскими работами в области электрохимических технологий и систем электропитания. По результатам проведённых исследований, при кооперации с ведущими институтами РАН (ИПХФ, ИФТТ и ИХТТМ), был реализован ряд пилотных проектов, показавших высокую эффективность. Для компании «МТС» была создана и введена в эксплуатацию модульная система резервного питания на базе водородно-воздушных топливных элементов, состоящая из ТЭ, системы управления, накопителя электроэнергии и преобразователя; с мощностью системы до 10 кВт.

Водородно-воздушные энергетические системы обладают рядом преимуществ, среди которых широкий температурный диапазон эксплуатации при температуре внешней среды (40...+60 °C), высокий КПД (до 60 %), отсутствие шума и вибраций, быстрый старт, компактность и экологичность (вода — единственный продукт работы).

Типы топливных элементов
Основные типы топливных элементов[14]
Тип топливного элемента Реакция на аноде Электролит Реакция на катоде Температура, °С
Щелочной ТЭ 2H2 + 4OH 4H2O + 4e Раствор КОН O2 + 2H2O + 4e 4OH 60-140 °С[15]
ТЭ с протонно-обменной мембраной 2H2 4H+ + 4e Протоннообменная мембрана O2 + 4H+ + 4e 2H2O 80
Метанольный ТЭ 2CH3OH + 2H2O 2CO2 + 12H+ + 12e Протоннообменная мембрана 3O2 + 12H+ + 12e 6H2O 60
ТЭ на основе ортофосфорной кислоты 2H2 4H+ + 4e Раствор фосфорной кислоты O2 + 4H+ + 4e 2H2O 200
ТЭ на основе расплавленного карбоната 2H2 + 2CO32 2H2O + 2CO2 + 4e Расплавленный карбонат O2 + 2CO2 + 4e 2CO32 650
Твердотельный оксидный ТЭ 2H2 + 2O2 2H2O + 4e Смесь оксидов O2 + 4e 2O2 1000


Воздушно-алюминиевый электрохимический генератор

Воздушно-алюминиевый электрохимический генератор использует для производства электроэнергии окисление алюминия кислородом воздуха. Токогенерирующую реакцию в нём можно представить в виде


а реакцию коррозии — как
.


Существенными преимуществами воздушно-алюминиевого электрохимического генератора являются: высокий (до 50 %) коэффициент полезного действия, отсутствие вредных выбросов, простота обслуживания[16].

Преимущества и недостатки

Преимущества водородных топливных элементов

Водородные топливные элементы обладают рядом ценных качеств, среди которых:
Высокий КПД
Downgrade Counter