Меню

Главная
Случайная статья
Настройки
Определитель
Материал из https://ru.wikipedia.org

Определитель (детерминант) в линейной алгебрескалярная величина, которая характеризует ориентированное «растяжение» или «сжатие» многомерного евклидова пространства после преобразования матрицей; имеет смысл только для квадратных матриц. Стандартные обозначения определителя матрицы , , [1].

Определитель квадратной матрицы размеров , заданной над коммутативным кольцом , является элементом кольца . Эта величина определяет многие свойства матрицы , в частности, матрица обратима тогда и только тогда, когда её определитель является обратимым элементом кольца . В случае, когда  — поле, определитель матрицы равен нулю тогда и только тогда, когда ранг матрицы меньше , то есть когда системы строк и столбцов матрицы являются линейно зависимыми.

Содержание

История

Теория определителей возникла в связи с задачей решения систем линейных уравнений.

К понятию определителя близко подошли авторы древнекитайского учебника «Математика в девяти книгах»[2].

В Европе определители матриц 2  2 встречаются у Кардано в XVI веке. Для старших размерностей определение детерминанта дано Лейбницем в 1693 году. Первая публикация принадлежит Крамеру. Теория определителей создана Вандермондом, Лапласом, Коши и Якоби. Термин «определитель» в современном его значении ввёл О. Коши (1815), хотя ранее (1801) «детерминантом» К. Гаусс назвал дискриминант квадратичной формы.

Японский математик Сэки Такакадзу ввёл определители независимо в 1683 году[3].

Определения

Через перестановки

Для квадратной матрицы размера её определитель вычисляется по формуле:
,


где суммирование проводится по всем перестановкам  чисел , а  обозначает число инверсий в перестановке .

Таким образом, в определитель входит слагаемых, которые также называют «членами определителя».

Эквивалентная формула:
,


где коэффициент символ Леви-Чивиты — равен:
0, если не все индексы различны,
1, если все индексы различны и подстановка чётна,
1, если все индексы различны и подстановка нечётна.


Аксиоматическое построение (определение на основе свойств)

Понятие определителя может быть введено на основе его свойств. А именно, определителем вещественной матрицы называется функция , обладающая следующими тремя свойствами[4]:
  1.  — кососимметрическая функция строк (столбцов) матрицы .
  2.  — полилинейная функция строк (столбцов) матрицы .
  3. , где  — единичная -матрица.


Значение определителя матрицы

Для матрицы первого порядка значение детерминанта равно единственному элементу этой матрицы:


Матрицы 2 x 2

Для матрицы определитель вычисляется как:


Эта матрица A может быть рассмотрена как матрица линейного отображения, преобразующего единичный квадрат в параллелограмм с вершинами (0, 0), (a, b), (a + c, b + d), и (c, d).

Абсолютное значение определителя равно площади этого параллелограмма, и, таким образом, отражает коэффициент, на который масштабируются площади при преобразовании A.

Значение определителя со знаком (ориентированная площадь параллелограмма) помимо коэффициента масштабирования также показывает, выполняет ли преобразование A отражение.

Матрицы 3 x 3

Определитель матрицы можно вычислить по формуле:


Для более удобного вычисления определителя третьего порядка можно воспользоваться правилом Саррюса или правилом треугольника.

Определитель матрицы, составленной из векторов равен их смешанному произведению в правой декартовой системе координат и, аналогично двумерному случаю, представляет собой ориентированный объём параллелепипеда, натянутого на . Геометрически определитель матрицы 3х3 означает объём параллелепипеда, построенного на векторах матрицы. [5]

Матрицы N N

В общем случае, для матриц более высоких порядков (выше 2-го порядка) определитель можно вычислить, применив следующую рекурсивную формулу:
, где  — дополнительный минор к элементу . Эта формула называется разложением по строке.


Легко доказать, что при транспонировании определитель матрицы не изменяется (иными словами, аналогичное разложение по первому столбцу также справедливо, то есть даёт такой же результат, как и разложение по первой строке):


Пусть .

Докажем, что по индукции. Видно, что для матрицы это верно:


Предположим, что для матрицы порядка — верно.


Также справедливо и аналогичное разложение по любой строке (столбцу):
Downgrade Counter