Меню

Главная
Случайная статья
Настройки
Теплоёмкость идеального газа
Материал из https://ru.wikipedia.org

Теплоёмкость идеального газа — отношение количества теплоты, сообщённой газу , к изменению температуры , которое при этом произошло [1].

Содержание

Удельная и молярная теплоёмкость

Молярная теплоёмкость — теплоёмкость 1 моля вещества [2]:


где — масса, молярная масса вещества.

Теплоёмкость единичной массы вещества называется удельной теплоёмкостью и, в системе СИ, измеряется в Дж/(кг·К)[1].

Формула расчёта удельной теплоёмкости[1][2]:
где c — удельная теплоёмкость,


Теплоёмкость идеального газа визопроцессах

Адиабатический

В адиабатическом процессе теплообмена с окружающей средой не происходит, то есть . Однако, объём, давление и температура меняются, то есть [3].

Следовательно, теплоёмкость идеального газа в адиабатическом процессе равна нулю: .

Изотермический

В изотермическом процессе постоянна температура, то есть . При изменении объёма газу передаётся (или отбирается) некоторое количество тепла[3]. Следовательно, теплоёмкость идеального газа равна плюс-минус бесконечности:

Изохорный

В изохорном процессе постоянен объём, то есть и, следовательно газ не совершает работы. Первое Начало Термодинамики для изохорного процесса имеет вид[1]:


А для идеального газа


Таким образом,


где — число степеней свободы частиц газа.

Другая формула:


где  — показатель адиабаты,  — газовая постоянная газа.

Изобарный

Молярная теплоёмкость при постоянном давлении обозначается как . В идеальном газе она связана с теплоёмкостью при постоянном объёме соотношением Майера [1]. Уравнение Майера вытекает из первого начала термодинамики[4]:
.


В рассматриваемом случае, согласно определению теплоёмкости:


Учитываем, что работа газа равна [4]:


Согласно уравнению Менделеева — Клапейрона для одного моля газа[1]:


Подставляя уравнение (4) в (3) получаем:


Так как энергия одной молекулы равна (6)[Комм 1][5], то и внутренняя энергия в целом и при изобарном процессе будет определяться по соотношению (1). Следовательно, подставляя уравнения (1) и (5) в (2) получаем соотношение Майера.

Молекулярно-кинетическая теория позволяет вычислить значения молярной теплоёмкости для классического идеального газа газов через значение универсальной газовой постоянной исходя из уравнения (6) и предположения, что молекулы газа не взаимодействуют между собой[5]:
  • для общего случая
  • для одноатомных газов то есть около 20.8 Дж/(моль·К);
  • для двухатомных газов и многоатомных газов с линейными молекулами[Комм 2] то есть около 29.1 Дж/(моль·К);
  • для многоатомных газов с нелинейными молекулами[Комм 2] то есть около 33.3 Дж/(моль·К).


Теплоёмкости можно также определить исходя из уравнения Майера, если известен показатель адиабаты, который можно измерить экспериментально (например, с помощью измерения скорости звука в газе или используя метод Клемана — Дезорма).

Теплоёмкость реального газа может значительно отклоняться от теплоёмкости идеального газа. Так, при температуре в 25 °С и атмосферном давлении атомарный водород имеет теплоёмкость 2,50R , а атомарный кислород — 2,63R. Также теплоёмкость реального газа зависит от температуры[5].




См. также

Комментарии
  1. i — сумма числа поступательных, числа вращательных и удвоенного числа колебательных степеней свободы
  2. 1 2 При жёсткой связи между атомами, то есть колебательные степени свободы исключены из рассмотрения. Примером трёхатомной линейной молекулы служит цианистый водород HCN.


Примечания
  1. 1 2 3 4 5 6 Савельев, 2001, с. 26—30.
  2. 1 2 Базаров И. П., Термодинамика, 2010, с. 41.
  3. 1 2 Савельев, 2001, с. 30—31.
  4. 1 2 Савельев, 2001, с. 18-20.
  5. 1 2 3 Савельев, 2001, с. 61-63.


Литература
  • Базаров И. П. Термодинамика. — 5-е изд. — СПб.—М.— Краснодар: Лань, 2010. — 384 с. — (Учебники для вузов. Специальная литература). — ISBN 978-5-8114-1003-3.
Downgrade Counter