Меню

Главная
Случайная статья
Настройки
Интервальная размерность графа
Материал из https://ru.wikipedia.org

В теории графов интервальная размерность графа — это инвариант графа, введённый Фредом С. Робертсом в 1969.

Интервальная размерность графа — это минимальная размерность, в которой заданный граф может быть представлен в виде графа пересечений гиперпрямоугольников (то есть многомерных прямоугольных параллелепипедов) с параллельными осям рёбрами. То есть должно существовать один-к-одному соответствие между вершинами графа и множеством гиперпрямоугольников, таких, что прямоугольники пересекаются тогда и только тогда, когда существует ребро, соединяющее соответствующие вершины.

Содержание

Примеры

На фигуре показан граф с шестью вершинами и представление этого графа в виде графа пересечений (обычных двумерных) прямоугольников. Этот граф нельзя представить в виде графа пересечений прямоугольников меньшей размерности (в данном случае — отрезков), так что интервальная размерность графа равна двум.

Робертс[1] показал, что граф с 2n вершинами, образованный удалением совершенного паросочетания из полного графа с 2n вершинами, имеет интервальную размерность в точности n — любая пара несоединённых вершин должна быть представлена в виде гиперпрямоугольников, которые должны быть разделены в отличной от другой пары размерности. Представление этого графа в виде гиперпрямоугольников с размерностью в точности n можно найти путём утолщения каждой из 2n граней n-мерного гиперкуба в гиперпрямоугольник. Вследствие этого результата такие графы начали называться графами Робертса[2], хотя они более известны как графы «вечеринки» и их можно трактовать также как графы Турана T(2n,n).

Связь с другими классами графов

Граф имеет интервальную размерность не больше единицы тогда и только тогда, когда он является интервальным графом. Интервальная размерность произвольного графа G — это минимальное число интервальных графов с тем же множеством вершин (что и у G), таких, что пересечение множеств рёбер интервальных графов даёт G. Любой внешнепланарный граф имеет интервальную размерность, не превосходящую двух[3], а любой планарный граф имеет интервальную размерность, не превосходящую трёх[4].

Если двудольный граф имеет интервальную размерность два, его можно представить в виде графа пересечений параллельных осям отрезков на плоскости[5].

Алгоритмические результаты

Многие задачи на графах могут быть решены или аппроксимированы более эффективно на графах с ограниченной интервальной размерностью. Например, задача о наибольшей клике может быть решена за полиномиальное время для графов с ограниченной интервальной размерностью[6]. Для некоторых других задач на графах эффективное решение или аппроксимация могут быть найдены, если известно представление в виде пересечения гипермногогранников малой размерности [7].

Однако нахождение таких представлений может оказаться трудным делом — проверка, не превосходит ли интервальная размерность заданного графа некоторой наперёд заданной величины K, является NP-полной задачей, даже для K = 2[8]. Чандран, Фрэнсис и Сивадасан [9] описали алгоритмы для нахождения представлений произвольных графов в виде графа пересечений гиперпрямоугольников с размерностью, которая находится в пределах логарифмического множителя наибольшей степени графа. Этот результат даёт верхнюю границу интервальной размерности графа.

Несмотря на трудность для естественных параметров, интервальная размерность графа является фиксированно-параметрически разрешимой задачей[англ.], если параметризацию проводить по числу вершинного покрытия входного графа[10].

Примечания
  1. Roberts, 1969.
  2. Например, см. статьи Чандрана, Фрэнсиса и Сивадасана (Chandran, Francis, Sivadasan (2010)), Чандрана и Сивадасана Chandran, Sivadasan (2007).
  3. Scheinerman, 1984.
  4. Thomassen, 1986.
  5. Bellantoni, Hartman, Przytycka, Whitesides, 1993.
  6. Чандран, Фрэнсис и Сивадасан (Chandran, Francis, Sivadasan (2010)) заметили, что это следует из факта, что эти графы имеют полиномиальное число максимальных клик. Явное представление в виде пересечения гиперпрямоугольников не требует перечисления всех максимальных клик.
  7. См., например, статьи Agarwal, van Kreveld, Suri (1998) и Berman, DasGupta, Muthukrishnan, Ramaswami (2001) для аппроксимациям наибольшего независимого множества для графов пересечений прямоугольников, и Chlebk, Chlebkov (2005) для обсуждения сложности аппроксимации этих задач для больших размерностей
  8. Коззенс (Cozzens (1981)) показал, что вычисление интервальной размерности графа является NP-полной задачей. Яннакакис (Yannakakis (1982)) показал, что даже проверка, не превосходит ли интервальная размерность величины 3, является NP-трудной. Наконец, Краточвил (Kratochvl (1994)) показал, что распознавание интервальной размерности = 2 является NP-трудной задачей.
  9. Chandran, Francis, Sivadasan, 2010.
  10. Adiga, Chitnis, Saurabh, 2010.


Литература
Downgrade Counter