Меню

Главная
Случайная статья
Настройки
Логика высказываний
Материал из https://ru.wikipedia.org

Логика высказываний, пропозициональная логика (лат. propositio — «высказывание»[1]) или исчисление высказываний[2], также логика нулевого порядка — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные[3].

Несмотря на свою важность и широкую сферу применения, логика высказываний является простейшей логикой и имеет очень ограниченные средства для исследования суждений[2].

Содержание

Язык логики высказываний

Язык логики высказываний (пропозициональный язык[4]) — формализованный язык, предназначенный для анализа логической структуры сложных высказываний[1].

Синтаксис логики высказываний

Исходные символы, или алфавит языка логики высказываний[5]:
  • множество пропозициональных переменных (пропозициональных букв):
  • пропозициональные связки (логические союзы):
Символ Значение
  Знак отрицания
 или & Знак конъюнкции («логическое И»)
Знак дизъюнкции («логическое ИЛИ»)
  Знак импликации
  • Вспомогательные символы: левая скобка (, правая скобка ).[6]


Пропозициональная формула — слово языка логики высказываний[7], то есть конечная последовательность знаков алфавита, построенная по изложенным ниже правилам и образующая законченное выражение языка логики высказываний[1].

Индуктивное определение множества формул логики высказываний:[4][1]
  1. Если , то (всякая пропозициональная переменная есть формула);
  2. если  — формула, то  — тоже формула;
  3. если и  — произвольные формулы, то , , — тоже формулы.


Других формул в языке логики высказываний нет.

Форма Бэкуса — Наура, определяющая синтаксис логики высказываний, имеет запись:



Заглавные латинские буквы , и другие, которые употребляются в определении формулы, принадлежат не языку логики высказываний, а его метаязыку, то есть языку, который используется для описания самого языка логики высказываний. Содержащие метабуквы выражения , и другие — не пропозициональные формулы, а схемы формул. Например, выражение есть схема, под которую подходят формулы , и другие[1].

Относительно любой последовательности знаков алфавита языка логики высказываний можно решить, является она формулой или нет. Если эта последовательность может быть построена в соответствии с пп. 1—3 определения формулы, то она формула, если нет, то не формула[1].

Поскольку в построенных по определению формулах оказывается слишком много скобок, иногда и не обязательных для однозначного понимания формулы, существует соглашение о скобках, по которому некоторые из скобок можно опускать. Записи с опущенными скобками восстанавливаются по следующим правилам.
  • Если опущены внешние скобки, то они восстанавливаются.
  • Если рядом стоят две конъюнкции или дизъюнкции (например, ), то в скобки заключается сначала самая левая часть (то есть эти связки левоассоциативны).
  • Если рядом стоят разные связки, то скобки расставляются согласно приоритетам: и (от высшего к низшему).


Когда говорят о длине формулы, имеют в виду длину подразумеваемой (восстанавливаемой) формулы, а не сокращённой записи.

Например: запись означает формулу , а её длина равна 12.

Формализация и интерпретация

Как и любой другой формализованный язык, язык логики высказываний можно рассматривать как множество всех слов, построенных с использованием алфавита этого языка[8]. Язык логики высказываний можно рассматривать как множество всевозможных пропозициональных формул[4]. Предложения естественного языка могут быть переведены на символический язык логики высказываний, где они будут представлять собой формулы логики высказываний. Процесс перевода высказывания в формулу языка логики высказываний называется формализацией. Обратный процесс подстановки вместо пропозициональных переменных конкретных высказываний называется интерпретацией[9].

Аксиомы и правила вывода формальной системы логики высказываний
Downgrade Counter