Меню
Главная
Случайная статья
Настройки
|
Дизъюнкция (от лат. disjunctio — «разобщение»), логическое сложение, логическое ИЛИ, включающее ИЛИ; иногда просто ИЛИ — логическая операция, по своему применению максимально приближённая к союзу «или» в смысле «или первый, или второй, или первый и второй»[1].
Дизъюнкция может быть операцией как бинарной (имеющей два операнда), так и -арной (имеющей операндов) для произвольного .
Запись может быть префиксной — знак операции стоит перед операндами (польская запись), инфиксной — знак операции стоит между операндами или постфиксной — знак операции стоит после операндов. При числе операндов более двух префиксная и постфиксная записи экономичнее.
Инверсией дизъюнкции является стрелка Пирса.
Содержание
Обозначения
Наиболее часто встречаются следующие обозначения для операции дизъюнкции:
- || |
При этом обозначение , рекомендованное международным стандартом ISO 31-11, наиболее широко распространено в современной математике и математической логике[2]. Появилось оно не сразу: Джордж Буль, положивший начало систематическому применению символического метода к логике, не работал с дизъюнкцией (используя вместо неё строгую дизъюнкцию, которую обозначал знаком +), а Уильям Джевонс предложил для дизъюнкции знак ·|· . Эрнст Шрёдер и П. С. Порецкий вновь использовали знак +, но уже применительно к обычной дизъюнкции[3]. Символ как обозначение дизъюнкции впервые встречается в статье «Математическая логика, основанная на теории типов»[4] Бертрана Рассела (1908); он образован от лат. vel, что означает «или»[5][6].
Обозначение для дизъюнкции было использовано и в раннем языке программирования Алгол 60[7]. Однако из-за отсутствия соответствующего символа в стандартных наборах символов (например, в ASCII или EBCDIC), применявшихся на большинстве компьютеров, в получивших наибольшее распространение языках программирования были предусмотрены иные обозначения для дизъюнкции. Так, в Фортране IV и PL/I применялись соответственно обозначения .OR. и | (с возможностью замены последнего на ключевое слово OR )[8]; в языках Паскаль и Ада используется зарезервированное слово or [9][10]; в языках C и C++ применяются обозначения | для побитовой дизъюнкции и || для логической дизъюнкции[11]).
Наконец, при естественном упорядочении значений истинности двузначной логики (когда полагают, что ), оказывается, что Таким образом, дизъюнкция оказывается частным случаем операции вычисления максимума; это открывает наиболее естественный способ определить операцию дизъюнкции в системах многозначной логики[12][13].
Булева алгебра
Логическая функция MAX в двухзначной (двоичной) логике называется дизъюнкция (логическое «ИЛИ», логическое сложение или просто «ИЛИ»). При этом результат равен наибольшему операнду.
В булевой алгебре дизъюнкция — это функция двух, трёх или более переменных (они же — операнды операции, они же — аргументы функции). Таким образом, результат равен , если все операнды равны ; во всех остальных случаях результат равен .
Таблица истинности
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Таблица истинности для тернарной (трёхоперандной) дизъюнкции:
|
|
|
|
0 |
0 |
0 |
0
|
0 |
0 |
1 |
1
|
0 |
1 |
0 |
1
|
0 |
1 |
1 |
1
|
1 |
0 |
0 |
1
|
1 |
0 |
1 |
1
|
1 |
1 |
0 |
1
|
1 |
1 |
1 |
1
|
Многозначная логика
Операция, называемая в двоичной логике дизъюнкция, в многозначных логиках называется максимум: , где , а — значность логики. Возможны и другие варианты[чего?]. Как правило, стараются сохранить совместимость с булевой алгеброй для значений операндов .
Название этой операции максимум имеет смысл в логиках с любой значностью, в том числе и в двоичной логике, а названия дизъюнкция, логическое «ИЛИ», логическое сложение и просто «ИЛИ» характерны для двоичной логики, а при переходе к многозначным логикам используются реже.
Классическая логика
В классическом исчислении высказываний свойства дизъюнкции определяются с помощью аксиом. Классическое исчисление высказываний может быть задано разными системами аксиом, и некоторые из них будут описывать свойства дизъюнкции. Один из самых распространённых вариантов включает 3 аксиомы для дизъюнкции:
С помощью этих аксиом можно доказать другие формулы, содержащие операцию дизъюнкции. Обратите внимание, что в классическом исчислении высказываний не происходит вычисления результата по значениям операндов (как в булевой алгебре), а требуется доказать формулу как единое целое на основе аксиом и правил вывода.
Схемотехника
Мнемоническое правило для дизъюнкции с любым количеством входов звучит так: На выходе будет:
- «1» тогда и только тогда, когда хотя бы на одном входе есть «1»,
- «0» тогда и только тогда, когда на всех входах «0»
Теория множеств
С точки зрения теории множеств, дизъюнкция аналогична операции объединения.
Программирование
В компьютерных языках используется два основных варианта дизъюнкции: логическое «ИЛИ» и побитовое «ИЛИ». Например, в языках C/C++/Perl/PHP логическое «ИЛИ» обозначается символом "||", а побитовое — символом "|". В языках Pascal/Delphi оба вида дизъюнкции обозначаются с использованием ключевого слова «or», а результат действия определяется типом операндов. Если операнды имеют логический тип (например, Boolean) — выполняется логическая операция, если целочисленный (например, Byte) — поразрядная.
Логическое «ИЛИ» применяется в операторах условного перехода или в аналогичных случаях, когда требуется получение результата или . Например:
if (a || b)
{
/* какие-то действия */
};
Результат будет равен , если оба операнда равны или . В любом другом случае результат будет равен .
При этом применяется стандартное соглашение: если значение левого операнда равно , то значение правого операнда не вычисляется (вместо может стоять сложная формула). Такое соглашение ускоряет исполнение программы и служит полезным приёмом в некоторых случаях. Компилятор Delphi поддерживает специальную директиву, включающую {$B-}
или выключающую {$B+}
подобное поведение. Например, если левый операнд проверяет необходимость вычисления правого операнда:
if (a == NULL || a->x == 0)
{
/* какие-то действия */
};
В этом примере, благодаря проверке в левом операнде, в правом операнде никогда не произойдёт разыменования нулевого указателя.
Побитовое «ИЛИ» выполняет обычную операцию булевой алгебры для всех битов левого и правого операнда попарно. Например,
если
|
a =
|
|
b =
|
|
то
|
a ИЛИ b =
|
|
Связь с естественным языком
Часто указывают на сходство между дизъюнкцией и союзом «или» в естественном языке, когда он употребляется в смысле «или то, или то, или оба сразу». В юридических документах часто пишут: «и (или)», иногда «и/или», подразумевая «или то, или то, или оба сразу». Составное утверждение «A и/или B» считается ложным, когда ложны оба утверждения A и B, в противном случае составное утверждение истинно. Это в точности соответствует определению дизъюнкции в булевой алгебре, если «истину» обозначать как , а «ложь» как .
Неоднозначность естественного языка заключается в том, что союз «или» используется в двух значениях: то для обозначения дизъюнкции, то для другой операции — строгой дизъюнкции (исключающего «ИЛИ»).
См. также
Примечания
- Гутников В. С. . Интегральная электроника в измерительных приборах. — Л.: Энергия, 1974. — 144 с. — С. 14—16.
- Кондаков, 1975, с. 534.
-
- Russell B. Mathematical Logic as Based on the Theory of Types // American Journal of Mathematics. — 1908. — Vol. 30, no. 3. — P. 222—262. — . Архивировано 4 апреля 2019 года.
- Earliest Uses of Symbols of Set Theory and Logic (неопр.). // Website Jeff Miller Web Pages. Дата обращения: 5 февраля 2016. Архивировано 20 февраля 1999 года.
- Кондаков, 1975, с. 149—150.
- Кондаков, 1975, с. 30.
-
-
-
-
-
-
Литература
|
|