Меню
Главная
Случайная статья
Настройки
|
Квантовая ёмкость (химическая ёмкость[1], электрохимическая ёмкость[2]) — дополнительная электрическая ёмкость между затвором и двумерным электронным газом (ДЭГ), возникающая благодаря низкой по сравнению с металлами плотностью состояний в ДЭГ. Этот термин был впервые введён Сержем Лурье (англ. Serge Luryi) в 1987 году[3][4] для характеристики изменения химического потенциала в инверсионных слоях кремния и ДЭГ в GaAs.
ДЭГ и затвор представляют собой обычный конденсатор с включённой последовательно квантовой ёмкостью.
Содержание
Теория
Если одна из обкладок конденсатора представляет собой металл с высокой плотностью состояний, а другая, расположенный на расстоянии d, — ДЭГ с много меньшей плотностью состояний, то изменение напряжения V на этом конденсаторе приводит к изменению электрического поля между обкладками E, а также к сдвигу химического потенциала , что можно записать в виде:
Это выражение можно переписать с учётом вариации заряда =en и, воспользовавшись теоремой Гаусса E=/, где =d0 произведение диэлектрической постоянной материала диэлектрика и диэлектрической постоянной вакуума, через ёмкость, нормированную на площадь обкладок C/A=/V в упрощённом виде
Первое слагаемое — это обратная ёмкость плоского конденсатора, а второе слагаемое связано с понятием квантовой ёмкости, которая пропорциональна плотности состояний
- ,
где e — элементарный заряд.
Если переписать ёмкость в терминах длины экранирования
- ,
то выражение примет ещё более прозрачный вид
поясняющий влияние конечной длины проникновения электрического поля в материал с меньшей плотностью состояний, чем у металла. Фактически расстояние между обкладками увеличивается на длину экранирования.[5]
Для ДЭГ плотность состояний равна (учтено только спиновое вырождение)[4]
- ,
где — эффективная масса носителей тока. Так как плотность состояний ДЭГ не зависит от концентрации, то квантовая ёмкость тоже не зависит от концентрации, хотя при учёте электрон-электронных взаимодействий квантовая ёмкость зависит от энергии[6][7].
Связь со сжимаемостью электронного газа
Для электронного газа, как и для обычного идеального газа можно ввести понятие сжимаемости K, обратная величина которой определяется как взятое с отрицательным знаком произведение объёма газа V и изменения давления P электронного газа при изменении объёма с сохранением числа частиц N:
Другое важное соотношение получается из теоремы Зейтца[8]:
Отсюда следует, что измеряя квантовую ёмкость мы также получаем информацию о сжимаемости электронного газа.
Термодинамическая плотность состояний
Для того чтобы учесть распределение электронов по энергии (распределение Ферми — Дирака ) из-за конечной температуры T, вводят так называемую термодинамическую плотность состояний, определяемую как[9][10]
где — плотность состояний при нулевой температуре; — постоянная Больцмана.
Графен
Для графена, где плотность состояний пропорциональна энергии, квантовая ёмкость зависит от концентрации[11]:
где — редуцированная постоянная Планка; — фермиевская скорость.
Применительно к одномерному случаю графеновых нанотрубок квантовая ёмкость на единицу длины определяется выражением[4]
- ,
где — постоянная Планка.
Примечания
- Bisquert, Juan; Vyacheslav S. Vikhrenko (2004). Interpretation of the Time Constants Measured by Kinetic Techniques in Nanostructured Semiconductor Electrodes and Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B. 108 (7): 2313–2322. doi:10.1021/jp035395y.
-
-
- 1 2 3 Слюсар, В. И.. Наноантенны: подходы и перспективы. - C. 58 - 65. Электроника: наука, технология, бизнес. – 2009. - № 2. C. 61 (2009). Дата обращения: 3 июня 2021. Архивировано 3 июня 2021 года.
- G. F. Giuliani and G. Vignale Quantum theory of the electron liquid Cambridge university press, 2005.
-
-
- G. D. Mahan Many-particle Physics 3rd edition Kluwer Academic/Plenum Publishers 2000
- M. I. Katsnelson Graphene: carbon in two dimensions Cambridge University Press 2012.
-
-
|
|