Меню
Главная
Случайная статья
Настройки
|
Класс сложности PSPACE — набор всех проблем разрешимости в теории сложности вычислений, которые могут быть разрешены машиной Тьюринга с полиномиальным ограничением пространства.
Содержание
Машина Тьюринга с полиномиальным ограничением пространства
Если для данной машины Тьюринга верно, что существует полином p(n), такой что на любом входе размера
Можно показать, что:
1. Если машина Тьюринга с пространством, полиномиально ограниченным
Отсюда следует, что все языки машин Тьюринга с полиномиальным ограничением пространства — рекурсивные.
Классы PSPACE, NPSPACE
Класс языков PSPACE — множество языков, допустимых детерминированной машиной Тьюринга с полиномиальным ограничением пространства.
Класс языков NPSPACE — множество языков, допустимых недетерминированной машиной Тьюринга с полиномиальным ограничением пространства.
Для классов языков PSPACE и NPSPACE верны следующие утверждения:
1. PSPACE = NPSPACE (этот факт доказывается теоремой Сэвича)
2. Контекстно-зависимые языки являются подмножеством PSPACE
3.
4.
5. Если язык принадлежит PSPACE, то существует машина Тьюринга с полиномиальным ограничением пространства, такая что она остановится за шагов для некоторого
Известно, что хотя бы один из трёх символов включения в утверждении должен быть строгим (то есть исключать равенство множеств, отношение между которыми он описывает), но неизвестно, который из них. Также хотя бы одно подмножество в утверждении должно быть собственным (то есть хотя бы один символ включения должен быть строгим).
Есть предположение, что все эти включения строгие .
PSPACE-полная задача
PSPACE-полная задача[англ.] — это такая задача к которой могут быть сведены по Карпу все проблемы класса PSPACE за полиномиальное время.
Про PSPACE-полную задачу известны следующие факты:
Если является PSPACE-полной задачей, то
1.
2.
Пример PSPACE-полной задачи: нахождение истинных булевых формул с кванторами[англ.].
Литература- Джон Хопкрофт, Раджив Мотвани, Джеффри Ульман. Введение в теорию автоматов, языков и вычислений = Introduction to Automata Theory, Languages, and Computation. — М.: «Вильямс», 2002. — 528 с. — ISBN 0-201-44124-1.
- Hopcroft, Motwani, Ullman: «Introduction to Automata Theory, Languages, and Computation»
|
|