Меню

Главная
Случайная статья
Настройки
Класс PSPACE
Материал из https://ru.wikipedia.org

Класс сложности PSPACE — набор всех проблем разрешимости в теории сложности вычислений, которые могут быть разрешены машиной Тьюринга с полиномиальным ограничением пространства.

Содержание

Машина Тьюринга с полиномиальным ограничением пространства

Если для данной машины Тьюринга верно, что существует полином p(n), такой что на любом входе размера

Можно показать, что:

1. Если машина Тьюринга с пространством, полиномиально ограниченным

Отсюда следует, что все языки машин Тьюринга с полиномиальным ограничением пространства — рекурсивные.

Классы PSPACE, NPSPACE

Класс языков PSPACE — множество языков, допустимых детерминированной машиной Тьюринга с полиномиальным ограничением пространства.

Класс языков NPSPACE — множество языков, допустимых недетерминированной машиной Тьюринга с полиномиальным ограничением пространства.

Для классов языков PSPACE и NPSPACE верны следующие утверждения:

1. PSPACE = NPSPACE (этот факт доказывается теоремой Сэвича)

2. Контекстно-зависимые языки являются подмножеством PSPACE

3.

4.

5. Если язык принадлежит PSPACE, то существует машина Тьюринга с полиномиальным ограничением пространства, такая что она остановится за шагов для некоторого

Известно, что хотя бы один из трёх символов включения в утверждении должен быть строгим (то есть исключать равенство множеств, отношение между которыми он описывает), но неизвестно, который из них. Также хотя бы одно подмножество в утверждении должно быть собственным (то есть хотя бы один символ включения должен быть строгим). Есть предположение, что все эти включения строгие .

PSPACE-полная задача

PSPACE-полная задача[англ.] — это такая задача к которой могут быть сведены по Карпу все проблемы класса PSPACE за полиномиальное время.

Про PSPACE-полную задачу известны следующие факты:

Если является PSPACE-полной задачей, то

1.

2.

Пример PSPACE-полной задачи: нахождение истинных булевых формул с кванторами[англ.].

Литература
  • Джон Хопкрофт, Раджив Мотвани, Джеффри Ульман. Введение в теорию автоматов, языков и вычислений = Introduction to Automata Theory, Languages, and Computation. — М.: «Вильямс», 2002. — 528 с. — ISBN 0-201-44124-1.
  • Hopcroft, Motwani, Ullman: «Introduction to Automata Theory, Languages, and Computation»



Downgrade Counter