Меню
Главная
Случайная статья
Настройки
|
Контактное число (иногда число Ньютона[1][2], в химии соответствует координационному числу[2]) — максимальное количество n-мерных шаров единичного радиуса, которые могут одновременно касаться одного такого же шара в n-мерном евклидовом пространстве (предполагается, что шары не проникают друг в друга, то есть объём пересечения любых двух шаров равен нулю).
Следует отличать контактное число от контактного числа на решётке[3] — аналогичного параметра для плотнейшей регулярной упаковки шаров. Вычисление контактного числа в общем случае до сих пор является нерешённой математической задачей.
Содержание
История
В одномерном случае не более двух отрезков единичной длины могут касаться такого же отрезка:
В двумерном случае можно интерпретировать задачу как нахождение максимального числа монет, касающихся центральной. Из рисунка видно, что разместить можно до 6 монет:
Это значит, что . С другой стороны, каждая касающаяся окружность отсекает на центральной окружности дугу в 60°, и эти дуги не пересекаются, значит . Видно, что в данном случае оценки сверху и снизу совпали и .
В трёхмерном случае речь идет о шарах. Здесь также легко построить пример с 12 шарами, касающимися центрального — они расположены в вершинах икосаэдра — поэтому . Данная нижняя оценка была известна ещё Ньютону.
Это расположение неплотное, между шарами будут довольно заметные зазоры. Оценка сверху стала причиной известного спора между Ньютоном и Д. Грегори в 1694 году. Ньютон утверждал, что , а Грегори возражал, что может быть можно расположить и 13 шаров. Он провёл вычисления и выяснил, что площадь центрального шара более чем в 14 раз больше площади проекции каждого из касающихся шаров, так что . Если позволить менять радиусы шаров на 2 %, то оказывается возможным прислонить до 14 шаров.
Лишь в 1953 году в статье Шютте и ван дер Вардена[4] была окончательно установлена правота Ньютона, несмотря на отсутствие у того строгого доказательства.
В четырёхмерном случае представить себе шары достаточно сложно. Размещение 24 четырёхмерных сфер вокруг центральной было известно давно, оно столь же регулярное, как и в двумерном случае, и решает одновременно и задачу о контактном числе на решётке. Это то же размещение, что у целых единичных кватернионов.
В явном виде это расположение было указано в 1900 году Госсетом[5]. Ещё раньше оно было найдено (в эквивалентной задаче) в 1872 году российскими математиками Коркиным и Золотарёвым[6][7]. Это расположение дало оценку снизу .
Попытки оценить это число сверху привели к развитию тонких методов теории функций, но не давали точного результата. Сначала удалось доказать, что , потом удалось снизить верхнюю границу до . И наконец в 2003 году российскому математику Олегу Мусину удалось доказать, что [8].
В размерностях 8 и 24 точная оценка была получена в 1970-е годы[9][10]. Доказательство основано на равенстве контактного числа и контактного числа на решётке в этих размерностях: решётки E8 (для размерности 8) и решётки Лича (для размерности 24).
В 2025 году ИИ AlphaEvolve от компании Google DeepMind улучшил нижнюю границу контактного числа в 11-мерном пространстве с 592 до 593[11].
Известные значения и оценки
В настоящее время точные значения контактных чисел известны только для , а также для и . Для других размерностей известны только верхние и нижние оценки, но не точные значения[12].
Размерность
|
Нижняя граница
|
Верхняя граница
|
1
|
2
|
2
|
6
|
3
|
12
|
4
|
24[8]
|
5
|
40
|
44[13]
|
6
|
72
|
78[13]
|
7
|
126
|
134[13]
|
8
|
240
|
9
|
306
|
364[13]
|
10
|
510[14]
|
554
|
11
|
593[11]
|
870
|
12
|
840
|
1 357
|
13
|
1 154[15]
|
2 069
|
14
|
1 932[14]
|
3 183
|
15
|
2 564
|
4 866
|
16
|
4 320
|
7 355
|
17
|
5 346
|
11 072
|
18
|
7 398
|
16 572[13]
|
19
|
10 688
|
24 812[13]
|
20
|
17 400
|
36 764[13]
|
21
|
27 720
|
54 584[13]
|
22
|
49 896
|
82 340
|
23
|
93 150
|
124 416
|
24
|
196 560
|
Приложения
Задача имеет практическое применение в теории кодирования.
В 1948 году Клод Шеннон опубликовал работу по теории информации, показывающую возможность передачи данных без ошибок в зашумленных каналах связи используя координаты упаковки единичных сфер в n-мерном пространстве. См. также Расстояние Хэмминга.
См. также
Примечания
- Яглом, И. М. Проблема тринадцати шаров. — Киев: Вища школа, 1975. — 84 с. Архивировано 28 июня 2020 года.
- 1 2
- Контактные числа на решётках: последовательность A001116 в OEIS
- Schtte, K. and van der Waerden, B. L. Das Problem der dreizehn Kugeln (неопр.) // Math. Ann.. — 1953. — Т. 125, № 1. — С. 325—334. — doi:10.1007/BF01343127.
- Gosset, Thorold. On the regular and semi-regular figures in space of n dimensions (англ.) // Messenger of Mathematics[англ.] : journal. — 1900. — Vol. 29. — P. 43—48.
- Korkine A., Zolotareff G. Sur les formes quadratiques positives quaternaires (неопр.) // Math. Ann.. — 1872. — Т. 5, № 4. — С. 581—583. — doi:10.1007/BF01442912. Рус. пер.:
- Н. Н. Андреев, В. А. Юдин. Арфиметический минимум квадратичной формы и сферические коды // Математическое просвещение. — 1998. — № 2. — С. 133—140. Архивировано 3 марта 2022 года.
- 1 2 Мусин О. Р. Проблема двадцати пяти сфер (рус.) // Успехи математических наук. — Российская академия наук, 2003. — Т. 58, № 4(352). — С. 153—154.
- Левенштейн В. И. О границах для упаковок в n-мерном евклидовом пространстве // ДАН СССР. — 1979. — Т. 245. — С. 1299—1303.
- A. M. Odlyzko, N. J. A. Sloane. New bounds on the number of unit spheres that can touch a unit sphere in n dimensions (англ.) // J. Combin. Theory Ser. A : journal. — 1979. — Vol. 26. — P. 210—214. — doi:10.1016/0097-3165(79)90074-8.
- 1 2 Meet AlphaEvolve, the Google AI that writes its own code—and just saved millions in computing costs
-
- 1 2 3 4 5 6 7 8 Hans D. Mittelmann and Frank Vallentin. [http://arxiv.org/abs/0902.1105 High-Accuracy Semidefinite Programming Bounds
for Kissing Numbers] // Experimental Mathematics. — 2010. — Т. 19, № 2. — С. 174—178. Архивировано 11 августа 2020 года.
- 1 2 Mikhail Ganzhinov. Highly symmetric lines // arXiv:2207.08266 [math]. — 2022-07-17. Архивировано 30 марта 2023 года.
- В. А. Зиновьев, Т. Эриксон. Новые нижние оценки на контактное число для небольших размерностей // Пробл. передачи информ.. — 1999. — Т. 35, № 4. — С. 3—11.
Ссылки
|
|