Меню

Главная
Случайная статья
Настройки
Конфигурация Рейе
Материал из https://ru.wikipedia.org

В математике конфигурация Рейе, предложенная Теодором Рейе в 1882 [1], — это конфигурация 12 точек и 16 прямых. Каждая точка конфигурации принадлежит четырём прямым, а каждая прямая содержит три точки. Таким образом, конфигурация Рейе обозначается как 124163.

Содержание

Реализация

Конфигурация Рейе может быть реализована в трёхмерном проективном пространстве, если взять в качестве прямых 12 рёбер и четыре длинные диагонали куба, а в качестве точек — восемь вершин куба, его центр и три точки, где четыре параллельных ребра пересекаются на бесконечности. Два правильных тетраэдра могут быть вписаны в куб, образуя звёздчатый октаэдр. Эти два тетраэдра являются перспективными друг другу фигурами четырьмя различными путями, а другие четыре точки являются их центрами перспективы. Эти два тетраэдра вместе с тетраэдром, образованным оставшимися 4 точками, образуют десмическую систему[англ.] трёх тетраэдров.

Любые две непересекающиеся сферы в трёхмерном пространстве с различными радиусами имеют два бикасательных[англ.] двойных конуса, вершины которых называются центрами подобия. Если даны три сферы и их центры не коллинеарны, их шесть центров подобия образуют шесть точек полного четырёхсторонника, четыре прямых которого называются осями подобия. Если же даны четыре сферы и их центры не лежат в одной плоскости, то они образуют 12 центров подобия и 16 осей подобия, дающих вместе конфигурацию Рейе[2].

Конфигурацию Рейе можно реализовать в виде точек и прямых на евклидовой плоскости, если нарисовать трёхмерную конфигурацию в 3-точечной перспективе[англ.]. Конфигурация 83122 восьми точек на вещественной проективной плоскости и 12 прямых, соединяющих их со схемой соединений куба, может быть расширена до конфигурации Рейе тогда и только тогда, когда восемь точек являются перспективной проекцией параллелепипеда[3].

Приложения

Аравинд[4] обратил внимание на то, что конфигурация Рейе лежит в основе доказательства теоремы Белла об отсутствии скрытых переменных в квантовой механике.

Связанные конфигурации

Конфигурация Паппа может быть получена из двух треугольников, являющихся перспективными фигурами относительно друг друга тремя различными путями аналогично интерпретации конфигурации Рейе с использованием десмических тетраэдров.

Если конфигурация Рейе образована из куба в трёхмерном пространстве, имеется 12 плоскостей, каждая из которых содержит четыре прямые — шесть граней куба и шесть плоскостей через противоположные стороны куба. Пересечение этих 12 плоскостей и 16 прямых с другой плоскостью в общем положении даёт конфигурацию 163124, двойственную конфигурации Рейе. Конфигурация Рейе и двойственная ей вместе образуют конфигурацию 284284[5].

Существует 574 различных конфигураций типа 124163[6].

Примечания
  1. Reye, 1882.
  2. Hilbert, Cohn-Vossen, 1952.
  3. Servatius, Servatius, 2010.
  4. Aravind, 2000.
  5. Grnbaum, Rigby, 1990.
  6. Betten, Betten, 2005.


Литература
Downgrade Counter