Меню
Главная
Случайная статья
Настройки
|
Десятичная система счисления — позиционная система счисления по целочисленному основанию 10.
Одна из наиболее распространённых систем.
В ней используются цифры 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, называемые арабскими цифрами.
Предполагается, что основание 10 связано с количеством пальцев на руках у человека.
Один десятичный разряд называется децит (decit) (сокращение от decimal digit).
Содержание
Определение
Один десятичный разряд в десятичной системе счисления (децит) иногда называют декадой. В цифровой электронике одному десятичному разряду десятичной системы счисления (дециту) соответствует один десятичный триггер.
Целое число x в десятичной системе счисления представляется в виде конечной линейной комбинации степеней числа 10:
- , где — это целые числа, называемые цифрами, удовлетворяющие неравенству
Обычно для ненулевого числа x требуют, чтобы старшая цифра в десятичном представлении x была также ненулевой.
Например, число сто три представляется в десятичной системе счисления в виде:
С помощью n позиций в десятичной системе счисления можно записать целые числа от 0 до , то есть, всего различных чисел.
Дробные числа записываются в виде строки цифр с разделителем десятичная запятая, называемой десятичной дробью:
где n — число разрядов целой части числа, m — число разрядов дробной части числа.
Двоично-десятичное кодирование
В двоичных компьютерах применяют двоично-десятичное кодирование десятичных цифр, при этом для одной двоично-десятичной цифры отводится четыре двоичных разряда (двоичная тетрада). Двоично-десятичные числа требуют большего количества битов для своего хранения[1]. Так, четыре двоичных разряда имеют 16 состояний, и при двоично-десятичном кодировании 6 из 16 состояний двоичной тетрады не используются[2].
Таблица сложения в десятичной системе счисления
+
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9
|
0
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9
|
1
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10
|
2
|
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11
|
3
|
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12
|
4
|
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13
|
5
|
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14
|
6
|
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15
|
7
|
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16
|
8
|
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17
|
9
|
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18
|
Одноразрядное двухоперандное (двухаргументное) десятичное сложение является одной из бинарных (двухаргументных, двухоперандных, двухвходовых) десятичных логических функций с бинарным (двухразрядным) результатом, имеющей кроме собственного номера и собственное название словами: "одноразрядный десятичный полусумматор".
Десятичной функцией в теории функциональных систем и в десятичной логике называют функцию типа , где — десятичное множество, а — неотрицательное целое число, которое называют арностью или местностью функции.
Всего существует простейших бинарных с бинарным (двухразрядным) результатом десятичных логических функций (2 децита -> 2 децита), где m - количество аргументов функции (входная "-арность"), а n - количество результатов действия функции (выходная "-арность"), что больше всех больших чисел Дирака вместе взятых и числа Шеннона (оценочное минимальное количество неповторяющихся шахматных партий, вычисленное в 1950 году американским математиком Клодом Шенноном, составляет приблизительно ) впридачу.
Одноразрядное двухоперандное (двухаргументное) десятичное сложение можно также представить, как комбинацию (объединение двух) бинарных (двухаргументных, двухоперандных, двухвходовых) десятичных логических функцией с унарным (одноразрядным) результатом, имеющих кроме собственных номеров и собственные названия словами: "одноразрядное десятичное бинарное сложение по модулю 10" и "единица переноса в следующий разряд при одноразрядном десятичном бинарном сложении".
Всего существует простейших бинарных с унарным (одноразрядным) результатом десятичных логических функций (2 децита -> 1 децит).
Номер функции "одноразрядное десятичное бинарное сложение по модулю 10" содержит все значения функции при переборе значений аргументов от 0 до 9 и относительно просто получается из таблицы десятичного полусумматора: 8765432109 7654321098 6543210987 5432109876 4321098765 3210987654 2109876543 1098765432 0987654321 9876543210 (пробелы отделяют по 10 знаков в номере функции).
Номер функции "единица переноса в следующий разряд при одноразрядном десятичном бинарном сложении" содержит все значения функции при переборе значений аргументов от 0 до 9 и тоже относительно просто получается из таблицы десятичного полусумматора:
1111111110 1111111100 1111111000 1111110000 1111100000 1111000000 1110000000 1100000000 1000000000 0000000000 (пробелы отделяют по 10 знаков в номере функции).
Так как в разряде переноса не бывает значения больше 1, то разряд переноса в одноразрядном десятичном полусумматоре является более простой десятичной функцией с унарным (одноразрядным) двоичным результатом (2 децита -> 1 бит).
'Half Adder Decimal Single-Digit
CLS
DATA 0,1,2,3,4,5,6,7,8,9
DATA 1,2,3,4,5,6,7,8,9,0
DATA 2,3,4,5,6,7,8,9,0,1
DATA 3,4,5,6,7,8,9,0,1,2
DATA 4,5,6,7,8,9,0,1,2,3
DATA 5,6,7,8,9,0,1,2,3,4
DATA 6,7,8,9,0,1,2,3,4,5
DATA 7,8,9,0,1,2,3,4,5,6
DATA 8,9,0,1,2,3,4,5,6,7
DATA 9,0,1,2,3,4,5,6,7,8
DATA 0,0,0,0,0,0,0,0,0,0
DATA 0,0,0,0,0,0,0,0,0,1
DATA 0,0,0,0,0,0,0,0,1,1
DATA 0,0,0,0,0,0,0,1,1,1
DATA 0,0,0,0,0,0,1,1,1,1
DATA 0,0,0,0,0,1,1,1,1,1
DATA 0,0,0,0,1,1,1,1,1,1
DATA 0,0,0,1,1,1,1,1,1,1
DATA 0,0,1,1,1,1,1,1,1,1
DATA 0,1,1,1,1,1,1,1,1,1
DEFINT I,J,F,A,B
FOR I=0 TO 9
FOR J=0 TO 9
READ F2DSM[I,J] 'Function 2-argument Decimal Summ Mod 10 NonSymmetric
NEXT J
NEXT I
FOR I=0 TO 9
FOR J=0 TO 9
READ F2DC[I,J] 'Function 2-argument Decimal Carry Summ 10 NonSymmetric
NEXT J
NEXT I
A=9
B=9
PRINT USING "#";A;
PRINT " + ";
PRINT USING "# = ";B;
PRINT USING "#";F2DC[A,B];
PRINT USING "#";F2DSM[A,B]
END
Таблица умножения в десятичной системе счисления
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9
|
0
|
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0
|
1
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9
|
2
|
0 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
16 |
18
|
3
|
0 |
3 |
6 |
9 |
12 |
15 |
18 |
21 |
24 |
27
|
4
|
0 |
4 |
8 |
12 |
16 |
20 |
24 |
28 |
32 |
36
|
5
|
0 |
5 |
10 |
15 |
20 |
25 |
30 |
35 |
40 |
45
|
6
|
0 |
6 |
12 |
18 |
24 |
30 |
36 |
42 |
48 |
54
|
7
|
0 |
7 |
14 |
21 |
28 |
35 |
42 |
49 |
56 |
63
|
8
|
0 |
8 |
16 |
24 |
32 |
40 |
48 |
56 |
64 |
72
|
9
|
0 |
9 |
18 |
27 |
36 |
45 |
54 |
63 |
72 |
81
|
Одноразрядное двухоперандное (двухаргументное) десятичное умножение является одной из бинарных (двухаргументных, двухоперандных, двухвходовых) десятичных логических функций с бинарным (двухразрядным) результатом, имеющей кроме собственного номера и собственное название словами: "одноразрядный десятичный умножитель".
Одноразрядный двухоперандный (двухаргументный) десятичный умножитель можно также представить, как комбинацию (объединение двух) бинарных (двухаргументных, двухоперандных, двухвходовых) десятичных логических функцией с унарным (одноразрядным) результатом, имеющих кроме собственных номеров и собственные названия словами: "младший разряд одноразрядного десятичного бинарного умножения" и "старший разряд одноразрядного десятичного бинарного умножения".
Всего существует простейших бинарных с унарным (одноразрядным) результатом десятичных логических функций (2 децита -> 1 децит).
Номер функции "младший разряд одноразрядного десятичного бинарного умножения" содержит все значения функции при переборе значений аргументов от 0 до 9 и относительно просто получается из таблицы десятичного умножения: 1234567890 2468024680 3692581470 4826048260 5050505050 6284062840 7418529630 8642086420 9876543210 0000000000 (пробелы отделяют по 10 знаков в номере функции).
Номер функции "старший разряд одноразрядного десятичного бинарного умножения" содержит все значения функции при переборе значений аргументов от 0 до 9 и тоже относительно просто получается из таблицы десятичного умножения: 8765432100 7654432100 6544322100 5443321100 4433221100 3322211000 2221110000 1111100000 0000000000 0000000000 (пробелы отделяют по 10 знаков в номере функции).
|
|