Меню

Главная
Случайная статья
Настройки
Логика высшего порядка
Материал из https://ru.wikipedia.org

Логика высшего порядка в математике и логике — форма предикатной логики, которая отличается от логики первого порядка дополнительными предикатами над предикатами, кванторами над ними, и, соответственно, более богатой семантикой. Логики высшего порядка с их стандартными семантиками более выразительны, но их модельно-теоретические свойства значительно более сложны для изучения и применения по сравнению с логикой первого порядка.

Логика первого порядка квантифицирует только переменные; логика второго порядка допускает также квантификацию предикатов и функциональных символов (над множествами); логика третьего порядка использует и квантифицирует предикаты над предикатами (множества множеств), и так далее. Например, предложение второго порядка


выражает принцип математической индукции. Логика высшего порядка включает все логики более низкого порядка; иначе говоря, логика высшего порядка допускает высказывания с предикатами (над множествами) более низкой глубины вложенности.

Содержание

Примеры и свойства

Логика высшего порядка включает ответвления простой теории типов[1] Чёрча и различные формы интуиционистской теории типов. Жерар Юэ показал, что задача унификации алгоритмически неразрешима в интуиционистской разновидности логики третьего порядка[2][3][4], то есть не существует алгоритма, который определял бы, есть ли решение у произвольного уравнения над термами третьего порядка (и тем более термами произвольного порядка выше третьего).

С учётом понятия изоморфизма операция булеана определяется в логике второго порядка. Используя это наблюдение, Хинтикка установил в 1955 году, что логики высшего порядка могут быть представлены логикой второго порядка в том смысле, что для каждой формулы логики высшего порядка можно найти соответствующую равновыполнимую формулу логики второго порядка[5].

В некоторых контекстах предполагается, что понятие логики высшего порядка относится к классической логике высшего порядка. Однако модальная логика высшего порядка также изучалась. Согласно некоторым учёным-логикам онтологическое доказательство[англ.] Гёделя лучше всего изучено (с технической точки зрения) именно в таком контексте[6].

См. также

Примечания
  1. Чёрч, Алонзо, A formulation of the simple theory of types Архивная копия от 15 ноября 2018 на Wayback Machine, The Journal of Symbolic Logic 5(2):56–68 (1940)
  2. Huet, Grard P. The Undecidability of Unification in Third Order Logic (англ.) // Information and Control[англ.] : journal. — 1973. — Vol. 22, no. 3. — P. 257—267. — doi:10.1016/s0019-9958(73)90301-x. Архивировано 21 января 2022 года.
  3. Huet, Grard (Сентябрь 1976). Resolution d'Equations dans des Langages d'Ordre 1,2,... (Ph.D.). Universite de Paris VII.
  4. статья в Стэнфордской философской энциклопедии о логике высшего порядка. Дата обращения: 9 августа 2016. Архивировано 17 июня 2016 года.


Литература
  • Andrews, Peter B. (2002). An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd ed, Kluwer Academic Publishers, ISBN 1-4020-0763-9
  • Stewart Shapiro, 1991, "Foundations Without Foundationalism: A Case for Second-Order Logic". Oxford University Press., ISBN 0-19-825029-0
  • Stewart Shapiro, 2001, "Classical Logic II: Higher Order Logic," in Lou Goble, ed., The Blackwell Guide to Philosophical Logic. Blackwell, ISBN 0-631-20693-0
  • Lambek, J. and Scott, P. J., 1986. Introduction to Higher Order Categorical Logic, Cambridge University Press, ISBN 0-521-35653-9


Ссылки
Downgrade Counter