Меню
Главная
Случайная статья
Настройки
|
Математика (др.-греч. [1] < «изучение; наука») — точная формальная наука[2], первоначально исследовавшая количественные отношения и пространственные формы[3]. В более современном понимании, это наука об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств, — именно тех, которые в качестве аксиом положены в основание той или иной математической теории[4].
Математика исторически сложилась на основе операций подсчёта, измерения и описания формы объектов[5]. Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке.
Математика не относится к естественным наукам, но широко используется в них как для точной формулировки их содержания, так и для получения новых результатов. Она является фундаментальной наукой, предоставляющей (общие) языковые средства другим наукам; тем самым она выявляет их структурную взаимосвязь и способствует нахождению самых общих законов природы[6].
Содержание
Основные сведения
Идеализированные свойства исследуемых объектов либо формулируются в виде аксиом, либо перечисляются в определении соответствующих математических объектов. Затем по строгим правилам логического вывода из этих свойств выводятся другие истинные свойства (теоремы). Эта теория в совокупности образует математическую модель исследуемого объекта. Таким образом, первоначально исходя из пространственных и количественных соотношений, математика получает более абстрактные соотношения, изучение которых также является предметом современной математики[7].
Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное с математикой положение. В частности, формальная логика может рассматриваться и как часть философских наук, и как часть математических наук; механика — и физика, и математика; информатика, компьютерные технологии и алгоритмика относятся как к инженерии, так и к математическим наукам и т. д.
Этимология
Слово «математика» произошло от др.-греч. , что означает «изучение, знание, наука», и др.-греч. , первоначально означающего «восприимчивый, успевающий»[8], позднее — «относящийся к изучению», впоследствии ставшее «относящийся к математике». В частности, , на латыни — ars mathematica, означает «искусство математики». Термин др.-греч. в современном значении этого слова «математика» встречается уже в трудах Аристотеля (IV век до н. э.). По мнению Фасмера, в русский язык слово пришло либо через пол. matematyka, либо через лат. mathematica[9].
В текстах на русском языке слово «математика», или маематика, встречается, по крайней мере, с XVII века — например, у Николая Спафария в «Книге избранной вкратце о девяти мусах и о седмих свободных художествах» (1672 год)[10].
Определения
Аристотель определял математику как «науку о количестве», и это определение являлось преобладающим вплоть до XVIII века.
Одно из первых определений предмета математики дал Декарт[11]:
К области математики относятся только те науки, в которых рассматривается либо порядок, либо мера, и совершенно не существенно, будут ли это числа, фигуры, звёзды, звуки или что-нибудь другое, в чём отыскивается эта мера. Таким образом, должна существовать некая общая наука, объясняющая всё относящееся к порядку и мере, не входя в исследование никаких частных предметов, и эта наука должна называться не иностранным, но старым, уже вошедшим в употребление именем Всеобщей математики.
В советское время классическим считалось определение из БСЭ[13]:464, данное А. Н. Колмогоровым:
Математика… наука о количественных отношениях и пространственных формах действительного мира.
Это определение Ф. Энгельса[14]; правда, далее Колмогоров поясняет, что все использованные термины надо понимать в самом расширенном и абстрактном смысле[13]:476,477.
Формулировка Бурбаки[4]:
Сущность математики… представляется теперь как учение об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств, — именно тех, которые в качестве аксиом положены в основание теории… Математика есть набор абстрактных форм — математических структур.
Герман Вейль пессимистически оценил возможность дать общепринятое определение предмета математики:
Вопрос об основаниях математики и о том, что представляет собой в конечном счёте математика, остаётся открытым. Мы не знаем какого-то направления, которое позволит, в конце концов, найти окончательный ответ на этот вопрос, и можно ли вообще ожидать, что подобный «окончательный» ответ будет когда-нибудь получен и признан всеми математиками.
«Математизирование» может остаться одним из проявлений творческой деятельности человека, подобно музицированию или литературному творчеству, ярким и самобытным, но прогнозирование его исторических судеб не поддаётся рационализации и не может быть объективным[15].
Разделы математики
1. Математика как учебная дисциплина подразделяется в Российской Федерации на элементарную математику, изучаемую в средней школе и образованную дисциплинами:
и высшую математику, изучаемую на нематематических специальностях вузов. Дисциплины, входящие в состав высшей математики, варьируются в зависимости от специальности.
Программа обучения по специальности математика[16] образована следующими учебными дисциплинами:
2. Математика как специальность научных работников Министерством образования и науки Российской Федерации[17] подразделяется на специальности:
3. Для систематизации научных работ используется раздел «Математика»[18] универсальной десятичной классификации (УДК).
4. Американское математическое общество (AMS) выработало свой стандарт для классификации разделов математики. Он называется Mathematics Subject Classification. Этот стандарт периодически обновляется. Текущая версия — это MSC 2020. Предыдущая версия — MSC 2010.
Обозначения
Поскольку математика работает с чрезвычайно разнообразными и довольно сложными структурами, система обозначений в ней также очень сложна. Современная система записи формул сформировалась на основе европейской алгебраической традиции, а также потребностей возникших позднее разделов математики — математического анализа, математической логики, теории множеств и др. Геометрия испокон века пользовалась наглядным (геометрическим же) представлением. В современной математике распространены также сложные графические системы записи (например, коммутативные диаграммы), нередко также применяются обозначения на основе графов.
Краткая история
Академиком А. Н. Колмогоровым предложена такая структура истории математики:
- Период зарождения математики, на протяжении которого был накоплен достаточно большой фактический материал;
- Период элементарной математики, начинающийся в VI—V веках до н. э. и завершающийся в конце XVI века («Запас понятий, с которыми имела дело математика до начала XVII века, составляет и до настоящего времени основу „элементарной математики“, преподаваемой в начальной и средней школе»);
- Период математики переменных величин, охватывающий XVII—XVIII века, «который можно условно назвать также периодом „высшей математики“»;
- Период современной математики — математики XIX—XX века, в ходе которого математикам пришлось «отнестись к процессу расширения предмета математических исследований сознательно, поставив перед собой задачу систематического изучения с достаточно общей точки зрения возможных типов количественных отношений и пространственных форм».
Развитие математики началось вместе с тем, как человек стал использовать абстракции сколько-нибудь высокого уровня. Простая абстракция — числа; осмысление того, что два яблока и два апельсина, несмотря на все их различия, имеют что-то общее, а именно занимают обе руки одного человека, — качественное достижение мышления человека. Кроме того, что древние люди узнали, как считать конкретные объекты, они также поняли, как вычислять и абстрактные количества, такие, как время: дни, сезоны, года. Из элементарного счёта естественным образом начала развиваться арифметика: сложение, вычитание, умножение и деление чисел.
Развитие математики опирается на письменность и умение записывать числа. Наверно, древние люди сначала выражали количество путём рисования чёрточек на земле или выцарапывали их на древесине. Древние инки, не имея иной системы письменности, представляли и сохраняли числовые данные, используя сложную систему верёвочных узлов, так называемые кипу. Существовало множество различных систем счисления. Первые известные записи чисел были найдены в папирусе Ахмеса, созданном египтянами Среднего царства. Индская цивилизация разработала современную десятичную систему счисления, включающую концепцию нуля.
Исторически основные математические дисциплины появились под воздействием необходимости вести расчёты в коммерческой сфере, при измерении земель и для предсказания астрономических явлений и, позже, для решения новых физических задач. Каждая из этих сфер играет большую роль в широком развитии математики, заключающемся в изучении структур, пространств и изменений.
Философия математики
Цели и методы
Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного раздела математики — создать математическую модель, достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика — обеспечить достаточный набор удобных средств для достижения этой цели.
Содержание математики можно определить как систему математических моделей и инструментов для их создания. Модель объекта учитывает не все его черты, а только самые необходимые для целей изучения (идеализированные). Например, изучая физические свойства апельсина, мы можем абстрагироваться от его цвета и вкуса и представить его (пусть не идеально точно) шаром. Если же нам надо понять, сколько апельсинов получится, если мы сложим вместе два и три, — то можно абстрагироваться и от формы, оставив у модели только одну характеристику — количество. Абстракция и установление связей между объектами в самом общем виде — одно из главных направлений математического творчества.
Другое направление, наряду с абстрагированием — обобщение. Например, обобщая понятие «пространство» до пространства n-измерений. «Пространство , при является математической выдумкой. Впрочем, весьма гениальной выдумкой, которая помогает математически разбираться в сложных явлениях»[19].
Изучение внутриматематических объектов, как правило, происходит при помощи аксиоматического метода: сначала для исследуемых объектов формулируются список основных понятий и аксиом, а затем из аксиом с помощью правил вывода получают содержательные теоремы, в совокупности образующие математическую модель.
Основания
Вопрос сущности и оснований математики обсуждался со времён Платона. Начиная с XX века наблюдается сравнительное согласие в вопросе, что надлежит считать строгим математическим доказательством, однако отсутствует согласие в понимании того, что в математике считать изначально истинным. Отсюда вытекают разногласия как в вопросах аксиоматики и взаимосвязи отраслей математики, так и в выборе логических систем, которыми следует при доказательствах пользоваться.
Помимо скептического, известны нижеперечисленные подходы к данному вопросу.
Предлагается рассматривать все математические объекты в рамках теории множеств, чаще всего с аксиоматикой Цермело — Френкеля (хотя существует множество других, равносильных ей).
Данный подход считается с середины XX века преобладающим, однако в действительности большинство математических работ не ставят задач перевести свои утверждения строго на язык теории множеств, а оперируют понятиями и фактами, установленными в некоторых областях математики. Таким образом, если в теории множеств будет обнаружено противоречие, это не повлечёт за собой обесценивание большинства результатов.
Данный подход предполагает строгую типизацию математических объектов. Многие парадоксы, избегаемые в теории множеств лишь путём специальных уловок, оказываются невозможными в принципе.
Данный подход предполагает изучение формальных систем на основе классической логики.
Интуиционизм предполагает в основании математики интуиционистскую логику, более ограниченную в средствах доказательства (но, как считается, и более надёжную). Интуиционизм отвергает доказательство от противного, многие неконструктивные доказательства становятся невозможными, а многие проблемы теории множеств — бессмысленными (неформализуемыми).
Конструктивная математика — близкое к интуиционизму течение в математике, изучающее конструктивные построения[прояснить]. Согласно критерию конструктивности — «существовать — значит быть построенным»[20]. Критерий конструктивности — более сильное требование, чем критерий непротиворечивости[21].
Основные темы
Число (количество)
Основной раздел, рассматривающий абстракцию количества — алгебра. Понятие «число» первоначально зародилось из арифметических представлений и относилось к натуральным числам. В дальнейшем оно, с помощью алгебры, было постепенно распространено на целые, рациональные, действительные, комплексные и другие числа.
|
|
Целые числа
|
|
|
Рациональные числа
|
|
|
Вещественные числа
|
|
|
|
Комплексные числа |
Кватернионы
|
Числа — Натуральные числа — Целые числа — Рациональные числа — Иррациональные числа — Алгебраические числа — Трансцендентные числа — Вещественные числа — Комплексные числа — Гиперкомплексные числа — Кватернионы — Октонионы — Седенионы — Гиперреальные числа — Сюрреальные числа — p-адические числа — Математические постоянные — Названия чисел — Бесконечность — Базы
Преобразования
Явления преобразований и изменений в самом общем виде рассматривает анализ.
Арифметика — Векторный анализ — Анализ — Теория меры — Дифференциальные уравнения — Динамические системы — Теория хаоса
Структуры
Теория множеств — Линейная алгебра — Общая алгебра (включает, в частности, теорию групп, универсальную алгебру, теорию категорий) — Алгебраическая геометрия — Теория чисел — Топология.
Пространственные отношения
Основы пространственных отношений рассматривает геометрия. Тригонометрия рассматривает свойства тригонометрических функций. Изучением геометрических объектов посредством математического анализа занимается дифференциальная геометрия. Свойства пространств, остающихся неизменными при непрерывных деформациях и само явление непрерывности изучает топология.
Геометрия — Тригонометрия — Алгебраическая геометрия — Топология — Дифференциальная геометрия — Алгебраическая топология — Линейная алгебра — Фракталы — Теория меры.
Дискретная математика
Дискретная математика включает средства исследования объектов, способных принимать только отдельные (дискретные) значения (то есть объектов, не способных изменяться плавно)[22].
Комбинаторика — Теория множеств — Теория решёток — Математическая логика — Теория вычислимости— Криптография — Теория функциональных систем — Теория графов — Теория алгоритмов — Логические исчисления
— Информатика.
Награды
Самой престижной наградой за достижения в области математики, иногда называемой «Нобелевской премией для математиков», является Филдсовская премия, основанная в 1924 году и присуждаемая каждые четыре года вместе с денежным вознаграждением в размере 15 000 канадских долларов. На церемонии открытия Международного конгресса математиков сообщаются имена лауреатов четырёх премий за достижения в математике:
Кроме того, с 2010 года на церемонии закрытия конгресса вручается премия Лилавати за популяризацию математики.
В 2000 году Математический институт Клэя объявил список из семи математических задач, за решение каждой из которых назначен приз в размере 1 млн долларов США[23].
Коды в системах классификации знаний
Программное обеспечение
Математическое программное обеспечение многогранно:
- Пакеты, ориентированные на набор математических текстов и на их последующую вёрстку (TeX).
- Пакеты, ориентированные на решение математических задач, численное моделирование и построение графиков (GNU Octave, Maple, Mathcad, MATLAB, Scilab).
- Электронные таблицы.
- Отдельные программы или пакеты программ, активно использующие математические методы (калькуляторы, архиваторы, протоколы шифрования/дешифрования, системы распознавания образов, кодирование аудио и видео).
См. также- Популяризаторы науки
Примечания
- , перевод (неопр.). www.classes.ru. Дата обращения: 20 сентября 2017. Архивировано 9 августа 2018 года.
- mathematics | Definition, History, & Importance | Britannica (англ.). www.britannica.com. Дата обращения: 13 января 2022. Архивировано 3 января 2018 года.
- Математика : [арх. 3 января 2023] // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
- 1 2 Бурбаки Н. Архитектура математики. Очерки по истории математики / Перевод И. Г. Башмаковой под ред. К. А. Рыбникова. М.: ИЛ, 1963. С. 32, 258.
- mathematics | Definition & History. Encyclopedia Britannica (англ.). Архивировано 3 июля 2008. Дата обращения: 20 сентября 2017.
- Глава 2. Математика как язык науки (неопр.). Сибирский открытый университет. Дата обращения: 5 октября 2010. Архивировано из оригинала 24 января 2012 года.
- Панов В. Ф. Математика древняя и юная. — Изд. 2-е, исправленное. — М.: МГТУ им. Баумана, 2006. — С. 581—582. — 648 с. — ISBN 5-7038-2890-2.
- Большой древнегреческий словарь () (неопр.). slovarus.info. Дата обращения: 20 сентября 2017. Архивировано из оригинала 12 февраля 2013 года.
- Математика (неопр.). classes.ru. Дата обращения: 20 сентября 2017. Архивировано 15 сентября 2017 года.
- Словарь русского языка XI—XVII вв. Выпуск 9 / Гл. ред. Ф. П. Филин. — М.: Наука, 1982. — С. 41.
- Декарт Р. Правила для руководства ума. М.-Л.: Соцэкгиз, 1936.
- Ren Descartes' Regulae ad directionem ingenii. Nach der Original-Ausgabe von 1701 herausgegeben von Artur Buchenau. — Leipzig, 1907. — P. 13.
- 1 2 Математика / А. Н. Колмогоров // Большая Советская Энциклопедия / гл. ред. Б. А. Введенский. — 2-е изд. — М. : Государственное научное издательство «Большая Советская Энциклопедия», 1954. — Т. 26 : Магнитка — Медуза. — С. 464—483. — 300 000 экз.
- «Чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира» в источнике: Маркс К., Энгельс Ф. Анти-Дюринг // Сочинения. — 2-е изд. — М.: Государственное издательство политической литературы, 1961. — Т. 20. — С. 37. — 130 000 экз.
Оригинал цитаты (нем.) — «Die reine Mathematik hat zum Gegenstand die Raumformen und Quantittsverhltnisse der wirklichen Welt» — в источнике: Friedrich Engels. Herrn Eugen Dhring's Umwlzung der Wissenschaft. — Leipzig, 1878. — P. 20. Архивировано 16 мая 2019 года.
- Герман Вейль // Клайн М. Математика. Утрата определённости. — М.: Мир, 1984. — С. 16. Архивировано 12 февраля 2007 года. Архивированная копия (неопр.). Дата обращения: 12 января 2009. Архивировано из оригинала 12 февраля 2007 года.
- Государственный образовательный стандарт высшего профессионального образования. Специальность 01.01.00. «Математика». Квалификация — Математик. Москва, 2000 (Составлено под руководством О. Б. Лупанова)
- Номенклатура специальностей научных работников, утверждённая приказом Минобрнауки России от 25.02.2009 № 59
- УДК 51 Математика (неопр.). Дата обращения: 7 сентября 2009. Архивировано 26 августа 2009 года.
- Я. С. Бугров, С. М. Никольский. Элементы линейной алгебры и аналитической геометрии. М.: Наука, 1988. С. 44.
- Н. И. Кондаков. Логический словарь-справочник. М.: Наука, 1975. С. 259.
- Г. И. Рузавин. О природе математического знания. — М., 1968.
- Renze, John; Weisstein, Eric W. Discrete Mathematics (англ.) на сайте Wolfram MathWorld.
- Mathematics Prizes (неопр.). Wolfram MathWorld. Дата обращения: 7 июля 2019. Архивировано 2 июня 2019 года.
- Электронная библиотека LibOk.Net - читать онлайн и скачать книги бесплатно (неопр.) (недоступная ссылка — история). www.gsnti-norms.ru. Дата обращения: 20 сентября 2017.
Литература- Энциклопедии
- Справочники
- А. А. Адамов, А. П. Вилижанин, Н. М. Гюнтер, А. Н. Захаров, В. М. Мелиоранский, В. Ф. Точинский, Я. В. Успенский. Сборник задач по высшей математике преподавателей Института Инженеров Путей Сообщения. — СПб., 1912.
- Шахно К. У. Справочник по элементарной математике. — Л., 1955.
- Г. Корн, Т. Корн. Справочник по математике для научных работников и инженеров. — М., 1973.
- Книги
- Занимательная математика
- Бобров С. П. Волшебный двурог. — М.: Детская литература, 1967. — 496 с.
- Дьюдени Г. Э. Кентерберийские головоломки; 200 знаменитых головоломок мира; Пятьсот двадцать головоломок.
- Кэррол Л. История с узелками; Логическая игра.
- Таунсенд Чарлз Барри. Звёздные головоломки; Самые весёлые головоломки; Самые трудные головоломки из старинных журналов.
- Перельман Я. И. Занимательная математика.
Ссылки
|
|